Segmentation of Individual Cells in Phase Contrast Microscopy Images

Jindřich Soukup1,2,3, Michal Lašan1, Filip Šroubek2

1Charles University in Prague, Faculty of Mathematics and Physics
2UTIA, ASCR
3University of South Bohemia

1Ke Karlovu 3, 121 16, Prague 2
2Pod Vodárenskou věží 4, Prague 8, 182 08
3Zámek 136, 373 33 Nové Hrady

\textbf{Motivation}

Phase contrast microscope images

- strong halo effects
- sometimes poorly focused
- impurities in solution - black dots outside the cells
- nonuniform shapes of cells
- dead cells
- texture-like background

\textbf{Toxicity/biocompatibility assessment - testing in vitro}

\textbf{Our aims}

- Automated processing of time-lapse image series
- Segmentation of moving objects (cells) from background
- Robustness to degradation present in phase contrast microscope images
- Characterize behavior of the cells

\textbf{Method}

- Original image
- Blurring
- Otsu thresholding
- Skeletonization - modified algorithm
- Adding the information about background
- Connecting loose ends using Dijkstra algorithm

- Halo effect is near borders of the cells ...
- we take the brighter part of the image ...
- and assume that border between cells goes in the middle of white fragments ...
- ... some parts of the border are missing ...
- ... and we also know, where is the background.
- Segmentation cells/background done by [1]

\textbf{Results}

- Precision, Recall, F1 (= Dice coeff)
- $P = TP/(TP+FP)$, $R = TP/(TP+FN)$
- $F1 = 2PR/(P+R)$
- HeLa (human carcinoma cells), L929 (mouse fibroplast), E6 (vero cells)
- Matlab + java implementation, 30 sec/image (4 MPixel)
- Results: (mean over all of the images) $P = 0.65$, $R = 0.73$, $F1 = 0.68$

\textbf{Implementation, gui, editor}

- Matlab/Java implementation
- Standalone application with GUI
- Speed: 30 s for 4 MPixel image (Dual Core 2.30 GHz)
- Batch processing

\textbf{Literature}

\textbf{Acknowledgment}

The authors acknowledge the support of the GAUK, grant No. 914813/2013, GA JU 134/2013/ Z, project CENAKVA (CZ.1.05/2.1.00/01.0024) and grant GAČR No. 13-29225S. The authors would also like to thank the staff of Working place of tissue culture - certified laboratory at Nové Hrady, namely Monika Homolková and Šárka Beranová for their assistance with the manual segmentation of the cells. The results of the project LG1205 were obtained with a financial support from the MEYS under the NPU I program, CENAKVA CZ.1.05/2.1.00/ 01.0024.