Image Segmentation via Graph-Cuts

Pavel Matula

21. května 2012
Outline

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Flow Network

Definition

A directed graph $G = (V, E)$ where V is the set of graph nodes and $E \subseteq V \times V$ is the set of graph edges. Each edge $(u, v) \in E$ has a real-valued capacity $c_{uv} \geq 0$. Further, there are two distinguished nodes in V, called terminal nodes: the source, denoted s and the sink, denoted t.
Cut

Definition

An **st-cut** C is a partition of the set V into two disjoint subsets S and $T = V \setminus S$ such that $s \in S$ and $t \in T$. Cut capacity $|C|_G$ is the sum of the capacities of the edges going from S to T:

$$|C|_G = \sum_{(u,v) \in E, u \in S, v \in T} c_{uv}$$
Minimum and Maximum Cuts

- There are $2^{|V|} - 2$ possible st-cuts
- **Minimum cut** is a cut with the smallest possible capacity
 - Problem of finding a minimum cut has polynomial time complexity
 - We will discuss algorithms later
- **Maximum cut** is a cut with the largest possible capacity
 - Problem of finding a maximum cut is NP-hard
- There may be several minimum and maximum cuts
Flow

- **Flow** in network $G = (V, E)$ is a mapping $f : E \rightarrow \mathbb{R}_0^+$ satisfying
 - Capacity constraint: $0 \leq f_{uv} \leq c_{uv}$ for all $u, v \in V$
 - Continuity condition: for all $u \in V \setminus \{s, t\}$ holds:
 \[
 \sum_{v \in V} (f_{uv} - f_{vu}) = 0.
 \]
- The value of the flow outgoing from source s is
 \[
 |f| = \sum_{v \in V} f_{sv}.
 \]
Maximum Flow and Minimal Cut Duality

- **Maximal flow** is a flow with the maximal value.
- Ford-Fulkerson:
 - problem of finding **minimal cut** is equivalent to problem of finding **maximal flow**.
 - **capacity** of minimal cut is **equal to the value** of maximal flow.
 - **edges belonging to minimal cut** are those which capacity is **fully saturated** by the flow.
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Obecný iterativní framework pro hledání maximálního toku.

Sestrojíme reziduální síť.

Najdeme zlepšující cestu v reziduální síti z uzlu s do uzlu t.

Zvýšíme tok po dané cestě o hodnotu hrany s nejmenší kapacitou na této cestě.

Výpočet opakujeme dokud je možné najít další zlepšující cestu.

V obecném případě složitost $O(E|f|)$, kde E je počet hran a $|f|$ hodnota maximálního toku.

Nemusí konvergovat pro sítě s neceločíselnými kapacitami.
Edmonds-Karp

- Zvláštní případ metody Ford-Fulkerson.
- Dvě varianty:
 - Zlepšování toku vždy po nejkratší cestě. Složitost $O(VE^2)$.
 - Zlepšování toku vždy po nejširší cestě. Složitost $O(E \log(EU))$, kde U je nejvyšší kapacita vyskytující se v síti.
- Záruka konvergence i pro síťy s iracionálními kapacitami hran.
Dinitz

- Zlepšování toku po všech nejkratších cestách naráz.
- Pomocí prohledávání do šířky jsou nalezeny všechny nejkratší cesty v reziduální síti.
- Obdržíme podsíť nejkratších cest, která neobsahuje smyčky.
- V získané podsíti najdeme maximální tok pomocí prohledávání do hloubky.
- Lze ukázat, že v další iteraci bude délka nejkratších cest ostře větší.
- Složitost $O(V^2E)$. V praxi výrazně rychlejší, než Edmonds-Karp.
Push-Relabel

- V současnosti pravděpodobně nejrychlejší a nejvyužívanější metody pro obecné grafy.
- Pro každý uzel si udržujeme předpokládanou délku nejkratší cesty k uzlu \(t \).
- Uzly mohou obsahovat přebytky toku (aktivní uzly).
- Optimistické prostrkávání toku do uzlů u kterých předpokládáme, že jsou blíže uzlu \(t \).
- Rozhodování vždy pouze na základě lokálních informací. Vhodné k paralelizaci a lokalizaci výpočtu v paměti.
- Pro rychlý výpočet ovšem třeba pravidelně provádět globální update informací.
- Složitost záleží na strategii volby aktivního uzlu:
 - Naivní implementace \(O(V^2E) \)
 - First-in First-out strategie \(O(V^3) \)
 - Nejvzdálenější aktivní uzel \(O(V^2\sqrt{E}) \)
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
What energy functions can be minimized via graph cuts?

- [Kolmogorov, Zabih] Let E be a function of n binary variables of type

$$E(x_1, \ldots, x_n) = \sum_i E^i(x_i) + \sum_{i<j} E^{i,j}(x_i, x_j).$$

Then, E is graph-representable if and only if each term $E^{i,j}$ satisfies the inequality

$$E^{i,j}(0, 0) + E^{i,j}(1, 1) \leq E^{i,j}(0, 1) + E^{i,j}(1, 0).$$

- Necessary and sufficient condition to be able to compute the exact global minimum of E using a single graph cut.
A graph $G = (V, E)$ is built where V contains the two terminal nodes s and t representing the labels 0 and 1, respectively, and a node for each variable x_i.
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Cut metrics

- Given a regular orthogonal grid and neighbourhood \mathcal{N}
- $|C|_G$ - Cut metric. Sum of weights of edges connecting inner and outer nodes
- For any contour - $|C|_G \approx |C|_\varepsilon$ and $|C|_G \to |C|_\varepsilon$ with increasing grid resolution and neighbourhood density

The Goal

How to set edge weights w_k?
Cauchy-Crofton Formula

The Cauchy-Crofton formula establishes a connection between Euclidean length $L(C)$ of a curve C in \mathbb{R}^2 and a measure of a set of lines intersecting it:

$$L(C) = \frac{1}{2} \int n_c \, d\mathcal{L}$$

where n_c is the number of intersections n_c with lines \mathcal{L}.

Consider the set of all lines \mathcal{L} given by polar formula $\mathcal{L}(\phi, \rho)$. Then the Cauchy-Crofton formula can be written as

$$L(C) = \frac{1}{2} \int_{-\infty}^{\infty} \int_{0}^{\pi} n_c(\phi, \rho) \, d\phi \, d\rho.$$
Discretization and Boykov’s Approach

\[|C|_\varepsilon = \int_0^\pi \int_{-\infty}^{+\infty} \frac{n_c(\phi, \rho)}{2} \, d\rho \, d\phi \approx \sum_{k=1}^n \left(\sum_i n_c(k, i) \Delta \rho_k \right) \Delta \phi_k \approx \sum_{k=1}^n n_c(k) \frac{\Delta \rho_k \Delta \phi_k}{2} \]

Weights (2D isotropic case): \[w_k = \frac{\Delta \rho_k \Delta \phi_k}{2} \quad \Delta \rho_k = \frac{\delta^2}{|e_k|} \]
Distance maps

N8

N16
Extension to 3D

Cauchy-Crofton

\[|C^2|_\varepsilon = \frac{1}{\pi} \int n_c \, d\mathcal{L} \]

Using the same derivative steps

\[w_k = \frac{\Delta \rho_k \Delta \phi_k}{\pi} \]

\[\Delta \rho_k = \frac{\delta_x \delta_y \delta_z}{|e_k|} \]
Contents

Graph Theory
- Flow Networks and Graph Cuts
- Maximum Flow Algorithms
- Discrete Energy Minimization
- Euclidean Metric Approximation
- Riemannian Metric Approximation

Graph Cut Segmentation
- Idea and Motivation
- Geodesic Segmentation
- Chan-Vese Minimization

Conclusion
Riemannian Spaces

- In Riemannian geometry, each point of the space is associated with a metric tensor M that controls how inner product of two vectors is calculated ("space stretching").
- In N-dimensional space, the tensor is a symmetric positive definite N-by-N matrix (a bilinear form) that varies smoothly over the space.
- In case M is constant, the Riemannian norm of a vector u is calculated as:

$$ |u|_\mathcal{R} = \sqrt{u^T \cdot M \cdot u}. $$
Edge Weights

- Weights approximating a Riemannian metric (Boykov):

\[w_k^R = w_k^E \cdot \frac{\det M}{(u_k^T \cdot M \cdot u_k)^p} \]

where \(u_k \) is a unit vector in the direction of \(e_k \), \(w_k^E \) is the weight for the Euclidean metric approximation and \(p \) equals to 3/2 and 2 in 2D and 3D, respectively.

- Euclidean metric a special case where \(M_{\text{const}} = I \)
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Graph Cut Segmentation Framework
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
How to set the weights?

- Geodesic Active Contours energy:

\[E_{GAC}(C) = \int_0^1 g(|\nabla G_\sigma \ast I(C(q))|)|C'(q)|dq \]

- t-links: 0 or large value (hard constraints)
- n-links - Riemannian tensors
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
How to set the weights?

Chan-Vese Functional

\[E_{CV}(C, c_1, c_2) = \mu L(C) + \lambda_1 \int_{\Omega_1} (f(x) - c_1)^2 \, dx + \lambda_2 \int_{\Omega_2} (f(x) - c_2)^2 \, dx \]

T-link weights:

\[w_{si} = \lambda_2 (f(i) - c_2)^2 \]
\[w_{it} = \lambda_1 (f(i) - c_1)^2 \]

N-link weights: \(w_{ij} = \mu w_k \) - see Page 21
Key observation

It is possible to setup w_{ij}, w_{si} and w_{it} such that capacity of any cut approximates the CV energy of the corresponding segmentation for fixed c_1 and c_2.

Alternating minimization scheme:

1. Obtain an initial estimate of c_1 and c_2
2. Construct graph and find globally minimal segmentation with respect to the fixed mean values
3. Update c_1 and c_2
4. Repeat from 2 until reaching a steady state
How to initialize c_1 nad c_2?

Algorithm idea

Minimize the Chan-Vese functional with a relaxed regularization term:

$$E(C, c_1, c_2) = \lambda_1 \int_{\Omega_1} (f(x) - c_1)^2 dx + \lambda_2 \int_{\Omega_2} (f(x) - c_2)^2 dx$$

- A significantly simpler problem
- Weighted KMeans clustering
 - Only data terms are compared in each pixel
 - Corresponds to finding a minimum cut with zero N-link weights
Properties

▶ Advantages:
 ▶ Simple and fast (and “automatic”)
 ▶ Reflects λ_1 and λ_2
 ▶ Very good estimate for small μ
 ▶ Requires less iterations of the main algorithm

▶ Disadvantages:
 ▶ Only an approximation, initialization dependent
 ▶ Does not guarantee reaching a global minimum
Chan-Vese Segmentation - Examples (1)
Chan-Vese Segmentation - Examples (2)
Boundary Smoothness

- Depends strongly on the neighbourhood size:
 - Large neighbourhoods are computationally expensive
Two-Stage Algorithm

Key observation
Segmentations are different but very close to each other.

Two-stage algorithm:
1. Coarse segmentation using a small neighbourhood
2. Refinement of the segmentation in a narrow band around the boundary using a large neighbourhood
Contents

Graph Theory
 Flow Networks and Graph Cuts
 Maximum Flow Algorithms
 Discrete Energy Minimization
 Euclidean Metric Approximation
 Riemannian Metric Approximation

Graph Cut Segmentation
 Idea and Motivation
 Geodesic Segmentation
 Chan-Vese Minimization

Conclusion
Conclusion

- Graph-cut framework is a powerful tool for discrete function minimization.
- Finding of minimal cut is a polynomial problem and we obtain global optimum.
- GC allows interactive segmentation.
- Geodesic segmentation can easily be implemented using graph-cuts.
- We have presented an iterative algorithm for Chan-Vese minimization.
- The neighbourhood system of the grid is related to boundary smoothness. Two stage-minimization reduces memory demands.