Image Matting – Review of Anat Levin et al.'s Algorithms

Jan Kotera, 2013
Source

- A Closed-Form Solution to Natural Image Matting (Levin et al., PAMI 2008)
- Spectral Matting (Levin et al., PAMI 2008)
Image matting – model and objective

= soft background-foreground separation

\[I_i = \alpha_i F_i + (1 - \alpha_i) B_i, \quad \alpha_i \in [0, 1], \quad \forall i \]
Image matting – model and objective

User input

- [Image of user input 1]
- [Image of user input 2]

or

- [Image of user input 3]
- [Image of user input 4]
Algorithm 1 – model (grayscale)

Compositing equation: \[I_i = \alpha_i F_i + (1 - \alpha_i) B_i, \]

Constant color assumption:
\[\alpha_i \approx a I_i + b, \quad \forall i \in w, \]
\[(a = 1/(F - B), \quad b = -B/(F - B)) \]

Cost function (model term):
\[J(\alpha, a, b) = \sum_{j \in I} \left(\sum_{i \in w_j} (\alpha_i - a_j I_i - b_j)^2 + c a_j^2 \right), \]
Algorithm 1 – model (grayscale)

Simplification:

Theorem 1. Define $J(\alpha)$ as

$$J(\alpha) = \min_{a,b} J(\alpha, a, b).$$

Then,

$$J(\alpha) = \alpha^T L \alpha,$$

where L is an $N \times N$ matrix, whose (i, j)th entry is

$$\sum_{k \mid (i,j) \in w_k} \left(\delta_{ij} - \frac{1}{|w_k|} \left(1 + \frac{1}{|w_k| + \sigma_k^2} (I_i - \mu_k)(I_j - \mu_k) \right) \right).$$
Algorithm 1 – model (grayscale)

Proof:

\[
J(\alpha, a, b) = \sum_k \left\| G_k \begin{bmatrix} a_k \\ b_k \end{bmatrix} - \bar{\alpha}_k \right\|^2,
\]

\[
(a_k^*, b_k^*) = (G_k^T G_k)^{-1} G_k^T \bar{\alpha}_k.
\]

\[
J(\alpha) = \sum_k \bar{\alpha}_k^T \bar{G}_k^T \bar{G}_k \bar{\alpha}_k
\]

\[
\bar{G}_k = I - G_k (G_k^T \bar{G}_k)^{-1} G_k^T.
\]
Algorithm 1 – model (color)

“Color line model”:

\[F_i = \beta_i^F F_1 + (1 - \beta_i^F) F_2 \]

\[B_i = \beta_i^B B_1 + (1 - \beta_i^B) B_2. \]

In each neighborhood \(w \).

Then

\[\alpha_i = \sum_c a^c I^c_i + b, \quad \forall i \in w. \]
Algorithm 1 – model (color)

Model term:

\[J(\alpha, a, b) = \sum_{j \in I} \left(\sum_{i \in w_j} \left(\alpha_i - \sum_c a_j^c I_i^c - b_j \right)^2 + \epsilon \sum_c a_j^c \right) \]

Simplification:

\[J(\alpha) = \alpha^T L \alpha. \]
Algorithm 1 – full cost function

Including user input:

$$\alpha = \text{argmin} \; \alpha^T L \alpha + \lambda (\alpha^T - b_S^T) D_S (\alpha - b_S),$$

Solution:

$$(L + \lambda D_S) \alpha = \lambda b_S.$$
Algorithm 1 – further user input

Two other “brush types”:

• Color-key brush
• Constant-color brush
Algorithm 1 – optimization

- Direct linear solver (small images)
- Multiscale (downsample, upsample α, solve only for “undecided” pixels)
- Multigrid solver (fast, worse quality)
Algorithm 1 – image separation

F and B are recovered by solving

\[
\min \sum_{i \in I} \sum_c (\alpha_i F_i^c + (1 - \alpha_i) B_i^c - I_i^c)^2 \\
+ |\alpha_{ix}| \left((F_{ix}^c)^2 + (B_{ix}^c)^2 \right) + |\alpha_{iy}| \left((F_{iy}^c)^2 + (B_{iy}^c)^2 \right),
\]
Algorithm 1 – results
Algorithm 1 – results
Algorithm 1 – results
Algorithm 2 - introduction

(Normalized) graph cuts for segmentation:

\[A_{i,j} = \text{similarity}(i, j) \]

\[D_{i,i} = \sum_j A_{i,j} \]

\[(D - A)y = \lambda y \]

Simple case – one connected component:

\[m_i^C = \begin{cases} 1 & i \in C' \\ 0 & i \notin C' \end{cases} \]

= 0-eigenvector of \(L = (D - A) \)
Algorithm 2 – introduction

Generalized compositing equation:

\[I_i = \sum_{k=1}^{K} \alpha_i^k F_i^k. \quad \sum_k \alpha_i^k = 1 \quad \forall k \]

Matting Laplacian:

\[J(\alpha) = \alpha^T L \alpha. \]

where

\[L = \sum_q A_q, \]

\[A_q(i, j) = \begin{cases}
\delta_{ij} - \frac{1}{|w_q|} \\
\left(1 + (I_i - \mu_q)^T \left(\Sigma_q + \frac{\sigma_q}{|w_q|} I_{3 \times 3}\right)^{-1} (I_j - \mu_q)\right) \\
0
\end{cases} \quad (i, j) \in w_q
\text{otherwise.} \]
Algorithm 2 – Laplacian nullspace

General idea: matting components are 0-eigenvectors of L, if every image window w satisfies the following model (one of the conditions)

1. A single component α^k is active within w.
2. Two components $\alpha^{k_1}, \alpha^{k_2}$ are active within w and the colors of the corresponding layers F^{k_1}, F^{k_2} within w lie on two different lines in RGB space.
3. Three components $\alpha^{k_1}, \alpha^{k_2}$ and α^{k_3} are active within w, each layer $F^{k_1}, F^{k_2}, F^{k_3}$ has a constant color within w, and the three colors are linearly independent.
Algorithm 2 – computation

Matting components are linear combination of the smallest eigenvectors:

\[E = [e^1, \ldots, e^K] \]

\[\alpha^k = E y^k \]

For some \(y^k \)

“Final” model:

\[
\min \sum_{i,k} |\alpha_i^k|^\gamma + |1 - \alpha_i^k|^\gamma, \quad \text{where } \alpha^k = E y^k
\]

subject to \(\sum_k \alpha_i^k = 1. \)

- Solved using Newton’s method (series of second-order approximations)

- Initialized by \(\alpha^k = EE^T m^{C^k} \), where \(m^{C^k} \) are results of pixel k-means clustering
Algorithm 2 – smallest eigenvectors
Algorithm 2 – matting components
Algorithm 2 – combining components

Final matting = combination of “foreground” components:

$$\alpha = \sum_{k} b^k \alpha^k.$$

Matting quality score:

$$J(\alpha) = \alpha^T L \alpha$$

Precomputed as:

$$J(\alpha) = b^T \Phi b, \quad \Phi(k, l) = \alpha^k L \alpha^l.$$
Algorithm 2 – unsupervised matting
Algorithm 2 – user input

Matting energy expressed in pairwise terms:

\[J(\alpha) = E(b) = \sum_k E_k(b^k) + \sum_{k,l} E_{k,l}(b^k - b^l)^2, \]

where

\[E_{k,l} = \max(0, -\phi_{k,l}). \]

and

\[E_k(0) = \infty \quad \text{If k-th component is marked is foreground} \]
\[E_k(1) = \infty \quad \text{If k-th component is marked is background} \]
\[E_k(\cdot) = 0 \quad \text{Otherwise} \]

- Solved using graph min-cut method
- Constraints are specified as scribbles or component labeling
Algorithm 2 – results

Input Our result Levin et al. [14]
Implementations

• Algorithm 1
 http://people.csail.mit.edu/alevin/matting.tar.gz

• Algorithm 2
 http://www.vision.huji.ac.il/SpectralMatting/code.tar.gz