Image Restoration

Image Restoration

- Diffusion
- Denoising
- Deconvolution
- Super-resolution
- Tomographic Reconstruction

Diffusion Term

Consider only the regularization term

$$F(u) = \int_{\Omega} |\nabla u|^2 dx$$

• E-L equation: (Laplace equation)

$$F'(u) = -\Delta u = 0$$

• Steepest Descent:

$$u_{k+1} = u_k + \alpha \Delta u$$

Evolution of Laplace's Equation

$$F(u) = \int_{\Omega} |\nabla u|^2 dx$$

$$u_t = \Delta u$$

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \alpha \mathbf{C} \mathbf{u}_k$$

Evolution of TV Equation

$$F(u) = \int_{\Omega} |\nabla u| dx$$
$$u_t = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \alpha \mathbf{L}_{\nabla \mathbf{u}_k} \mathbf{u}_k$$

Isotropic & Anisotropic Diffusion

Acquisition model with noise

original image

acquired images

$$u(x) + n(x) = z(x)$$

Denoising

Acquisition model

$$z = u + n \qquad \qquad n \dots N(0, \sigma_n^2)$$

Minimization problem

$$F(u) = \frac{1}{2} \int_{\Omega} |z - u|^2 dx + \lambda \int_{\Omega} |\nabla u|^2 dx$$

Data term
Weighting parameter
Regularization term

Equivalent Formulations

$$\min\left\{\frac{1}{2}\int_{\Omega}|z-u|^{2}dx+\lambda\int_{\Omega}|\nabla u|^{2}dx\right\}$$

Constraint minimization

$$\min \int |\nabla u|^2 \quad \text{subject to } \|z - u\|^2 = \sigma_n^2$$

Maximum A Posteriori (MAP) estimate

$$\min\left\{-\log p(u|z)\right\}$$

Bayes' Theorem:

$$p(u|z) = \frac{p(z|u)p(u)}{p(z)}$$

• Denoising functional:

$$F(u) = \frac{1}{2} \int_{\Omega} |z - u|^2 dx + \lambda \int_{\Omega} |\nabla u|^2 dx$$

• E-L equation:

$$F'(u) = (z - u) - \lambda \Delta u = 0$$

- Discrete solution:
 - Set of linear equations

$$(\mathbf{I} + \lambda \mathbf{L})\mathbf{u} = \mathbf{z}$$

Original image *u*

noisy image z

Regularization Weight "λ"

Regularization

$$F(u) = \frac{1}{2} \int_{\Omega} |z - u|^2 dx + \lambda \int_{\Omega} \sqrt[k]{|x|^2 d} dx$$

$$F'(u) = (z - u) - \lambda \operatorname{div}\left(\frac{\phi'(|\nabla u|)}{|\nabla u|} \nabla u\right) = 0$$

 $\phi(s) = s^2$

- L^2 norm ... Tichonov
- $\phi(s) = \sqrt{\epsilon + s^2}$ $\phi(s) = \frac{s^2}{\epsilon + s^2}$
- L^1 norm ... Total Variation
- Nonconvex

Regularization

Noisy input image

$$\phi(s) = s^2$$

$\phi(s) = \sqrt{\epsilon + s^2}$

noisy

original

$\phi(s) = \sqrt{\epsilon + s^2}$

 $\phi(s) = 0$

 $\epsilon + s^2$ S^2 $\phi(s) =$

 $\phi(s) = s^2$

Anisotropic Denoising

noisy BEEM image

TV + histogram equalization

wavelet-based denoising

TV-based denoising

Anisotropic Denoising

noisy BEEM image

TV + histogram equalization

wavelet-based denoising

TV-based denoising

Acquisition model with blur

$$[u * h](x)$$

$$+ n(x) = z(x)$$

Motion Blur

*

Out-of-focus Blur

*

Inverse Filter

 $H(\omega)$

Wiener Filter

z(x)

 $\lambda = 0.001$

 $\lambda = 0.1$

Deblurring (Deconvolution)

Acquisition mode

$$z = (h * u) + n \qquad n \dots N(0, \sigma_n^2)$$

h \dots convolution kernel

Minimization problem

$$F(u) = \frac{1}{2} \int_{\Omega} |z - h * u|^2 dx + \lambda \int_{\Omega} \phi(|\nabla u|) dx$$

Data
term
Weighting
parameter

• E-L equation:

$$F'(u) = h \circledast (z - h \ast u) - \lambda \operatorname{div} \left(\frac{\phi'(|\nabla u|)}{|\nabla u|} \nabla u\right) = 0$$

- Discrete solution:
 - Set of linear equations

$$(\mathbf{H}^T\mathbf{H} + \lambda \mathbf{L}_{\nabla u})\mathbf{u} = \mathbf{H}^T\mathbf{z}$$

Long-time Exposure

How tackle the blind case?

- When the blur kernel h(x) is not known
- Estimate blur by other means

Blur estimation from point source

BEFORE COSTAR

AFTER COSTAR

Blur estimation from spectra

Motion blur

Out-of-focus blur

Works only for precise line and cylinder!

True PSF is not a precise line

How tackle the blind case?

- When the blur kernel h(x) is not known
- Estimate blur by other means

- One is tempted to:
 - 1) Add blur regularization
 - 2) Perform alternating minimization

Alternating Minimization

$$\min_{u,h} F(u,h) = \min_{u,h} \frac{1}{2} \|u * h - z\|^2 + \lambda Q(u) + \frac{\gamma R(h)}{\gamma R(h)}$$

• Alternate between two steps:

1)
$$\tilde{u} = \arg\min_{u} F(u, \tilde{h})$$

2) $\tilde{h} = \arg\min_{h} F(\tilde{u}, h)$

Blur Regularization term

Blur regularization

$$\min_{u,h} F(u,h) = \min_{u,h} \frac{1}{2} \|u * h - z\|^2 + \lambda Q(u) + \frac{\gamma R(h)}{\gamma R(h)}$$

• Blur has different shape

- Compact support
- Non-negative
- Preserve energy

"No-blur" solution

$$\min_{u,h} F(u,h) = \min_{u,h} \frac{1}{2} \|u * h - z\|^2 + \lambda Q(u) + \gamma R(h)$$

 Both image and blur regularization do not penalize the solution:

$$\tilde{u}(x) = z(x), \quad \tilde{h}(x) = \delta(x)$$

Ragularization favors blur

Ragularization favors blur

We need tricks

- To avoid "no-blur" solution:
 - Artificially sparsify image
 - Removing spikes
 - Sharpening
 - Adjusting priors on the fly
 - Hierarchical approach
 - Learn image prior with CNN

Chan TIP1998 Shan SigGraph08 Cho SigGraph 09 Xu ECCV09, 13 Almeida TIP10 Krishnan 11 Zhong 13 Sun 13 Michael 14 Perrone 15 Pan 16 Li CVPR18

Removing spiky objects

Reconstructed image with small objects removed

Artificial sharpening

Blurred image

Blu Shock filter

Blur prediction h-step Deconvolution u-step

Hierarchical deconvolution

image

Scale N-2

Scale N-1

Ø

Scale N

blur

Example of VB blind deconvolution

Blurred image z(x)

Reconstructed image u(x)

Multi-Channel Acquisition Model

Blind Deconvolution

Acquisition model

$$z_k = (h_k * u) + n_k$$

• Minimization problem

Blur Regularization Term

$$R(\{h_i\}) = \frac{1}{2} \sum_{1 \le i,j \le K} \|z_i * h_j - z_j * h_i\|^2$$

Alternating Minimization

Minimization of $F(u, \{h_k\})$ over u and h_k alternates.

Input: Blurred images and estimation of the blur size

Output: Reconstructed image and the blurs

Astronomical Imaging

Degraded images

Reconstructed image

Blur estimation

Multichannel Deconvolution

Super-resolution

Super-resolution

Super-resolution

Superresolution

Acquisition model

$$z_k = D(h_k * u) + n_k$$

• Minimization problem

$$F(u, \{h_k\}) = \frac{1}{2} \sum_{k=1}^{K} \int_{\Omega} |z_k - D(h_k * u)|^2 dx + \lambda \int_{\Omega} \phi(|\nabla u|) dx + \gamma R(\{h_k\})$$

$$\int_{\Omega} \frac{1}{2} \int_{\Omega} \frac{1}{$$

Superresolution

rough registration

Superresolved image (2x)

Optical zoom (ground truth)

SR limits

SR 3x

Superresolution of Video

Interpolated video

Super-resolved video (2x)

Interpolated video

Super-resolved video (2x)

Interpolated video

Super-resolved video (2x)

Space-variant blur

Camera Motion

Object Motion

Optical Abberations

Space-variant Out-of-focus Blur

Tomographic Reconstruction

- CT
- SPECT

X-rays

gamma rays

- MRI
- PET

- electromagnetic waves
- positron-electron annihilation

Tomography Principle

1D projections of 2D objects

Sinogram

- Projections (sinogram) = Radon Transform
- Reconstruction → Inverse Radon (Filtered Back Projection)

Back Projection

Projection-Slice Theorem

Variational Reconstruction

- *R* ... operator performing projections
- z ... sinogram

• Our optimization problem is $F(u) = \frac{1}{2} \int_{\Omega} |z - Ru|^2 dx + \lambda \int_{\Omega} \phi(|\nabla u|) dx$

original

15 projections (in Fourier domain)

Back Projection

Variational Reconstruction

End