Image Restoration

Image Restoration

- Diffusion
- Denoising
- Deconvolution
- Super-resolution
- Tomographic Reconstruction

Diffusion Term

- Consider only the regularization term

$$
F(u)=\int_{\Omega}|\nabla u|^{2} d x
$$

- E-L equation: (Laplace equation)

$$
F^{\prime}(u)=-\Delta u=0
$$

- Steepest Descent:

$$
u_{k+1}=u_{k}+\alpha \Delta u
$$

Evolution of Laplace's Equation

$$
\begin{aligned}
F(u) & =\int_{\Omega}|\nabla u|^{2} d x \\
u_{t} & =\Delta u \\
\mathbf{u}_{k+1} & =\mathbf{u}_{k}-\alpha \mathbf{C} \mathbf{u}_{k}
\end{aligned}
$$

Evolution of TV Equation

$$
\begin{aligned}
F(u) & =\int_{\Omega}|\nabla u| d x \\
u_{t} & =\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) \\
\mathbf{u}_{k+1} & =\mathbf{u}_{k}-\alpha \mathbf{L}_{\nabla \mathbf{u}_{k}} \mathbf{u}_{k}
\end{aligned}
$$

Isotropic \& Anisotropic Diffusion

Acquisition model with noise

original image

$$
u(x)+n(x)
$$

acquired images

$$
=z(x)
$$

Denoising

- Acquisition model

$$
z=u+n \quad n \ldots N\left(0, \sigma_{n}^{2}\right)
$$

- Minimization problem

$$
F(u)=\frac{1}{2} \int_{\substack{\text { Data } \\ \text { term }}}|z-u|^{2} d x+\lambda \int_{\Omega}|\nabla u|^{2} d x
$$

Equivalent Formulations

$$
\min \left\{\frac{1}{2} \int_{\Omega}|z-u|^{2} d x+\lambda \int_{\Omega}|\nabla u|^{2} d x\right\}
$$

- Constraint minimization

$$
\min \int|\nabla u|^{2} \quad \text { subject to }\|z-u\|^{2}=\sigma_{n}^{2}
$$

- Maximum A Posteriori (MAP) estimate

$$
\min \{-\log p(u \mid z)\}
$$

Bayes' Theorem:

$$
p(u \mid z)=\frac{p(z \mid u) p(u)}{p(z)}
$$

- Denoising functional:

$$
F(u)=\frac{1}{2} \int_{\Omega}|z-u|^{2} d x+\lambda \int_{\Omega}|\nabla u|^{2} d x
$$

- E-L equation:

$$
F^{\prime}(u)=(z-u)-\lambda \Delta u=0
$$

- Discrete solution:
- Set of linear equations

$$
(\mathbf{I}+\lambda \mathbf{L}) \mathbf{u}=\mathbf{z}
$$

Original image u

noisy image z

Regularization Weight " λ "

$(\mathbf{I}+\lambda \mathbf{L}) \mathbf{u}=\mathbf{g}$

Regularization

$$
\begin{aligned}
& \left.F(u)=\frac{1}{2} \int_{\Omega}|z-u|^{2} d x+\lambda \int_{\Omega}|\nabla \nabla|\langle x)^{2} u d\right) d x \\
& F^{\prime}(u)=(z-u)-\lambda \operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)=0 \\
& \phi(s)=s^{2} \quad \cdot L^{2} \text { norm ... Tichonov } \\
& \phi(s)=\sqrt{\epsilon+s^{2}} \quad \cdot L^{1} \text { norm ... Total Variation } \\
& \phi(s)=\frac{s^{2}}{\epsilon+s^{2}} \quad \cdot \text { Nonconvex }
\end{aligned}
$$

Regularization

$$
\begin{aligned}
& \phi(s)=s^{2} \\
& \phi(s)=\sqrt{\epsilon+s^{2}} \\
& \phi(s)=\frac{s^{2}}{\epsilon+s^{2}}
\end{aligned}
$$

Noisy input image

$$
\phi(s)=s^{2} \quad \phi(s)=\sqrt{\epsilon+s^{2}}
$$

Anisotropic Denoising

noisy BEEM image

TV + histogram equalization

wavelet-based denoising

TV-based denoising

Anisotropic Denoising

noisy BEEM image

TV + histogram equalization

wavelet-based denoising

TV-based denoising

Acquisition model with blur

original image

$$
\left[\begin{array}{lll}
u & * & h](x)
\end{array}+n(x) \quad=z(x)\right.
$$

Motion Blur

Out-of-focus Blur

Inverse Filter

equivalent

$$
F(u)=\|z-h * u\|^{2}
$$

$H(\omega)$

Wiener Filter

Deblurring (Deconvolution)

- Acquisition mode

$$
\begin{array}{ll}
z=(h * u)+n & n \ldots N\left(0, \sigma_{n}^{2}\right) \\
& h \ldots \text { convolution kernel }
\end{array}
$$

- Minimization problem

$$
F(u)=\frac{1}{2} \int_{\Omega}|z-h * u|^{2} d x+\lambda \int_{\Omega} \phi(|\nabla u|) d x
$$

- E-L equation:

$$
F^{\prime}(u)=h \circledast(z-h * u)-\lambda \operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)=0
$$

- Discrete solution:
- Set of linear equations

$$
\left(\mathbf{H}^{T} \mathbf{H}+\lambda \mathbf{L}_{\nabla u}\right) \mathbf{u}=\mathbf{H}^{T} \mathbf{z}
$$

Long-time Exposure

How tackle the blind case?

- When the blur kernel $h(x)$ is not known - Estimate blur by other means

Blur estimation from point source

Blur estimation from spectra

- Motion blur

- Out-of-focus blur

- Works only for precise line and cylinder!

How tackle the blind case?

- When the blur kernel $h(x)$ is not known
- Estimate blur by other means
- One is tempted to:

1) Add blur regularization
2) Perform alternating minimization

Alternating Minimization

$$
\min _{u, h} F(u, h)=\min _{u, h} \frac{1}{2}\|u * h-z\|^{2}+\lambda Q(u)+\gamma R(h)
$$

- Alternate between two steps:

1)

$\tilde{u}=\arg \min _{u} F(u, \tilde{h})$
2) $\quad \tilde{h}=\arg \min _{h} F(\tilde{u}, h)$

Blur regularization

$$
\min _{u, h} F(u, h)=\min _{u, h} \frac{1}{2}\|u * h-z\|^{2}+\lambda Q(u)+\gamma R(h)
$$

- Blur has different shape
- Compact support
- Non-negative
- Preserve energy

"No-blur" solution

$$
\min _{u, h} F(u, h)=\min _{u, h} \frac{1}{2}\|u * h-z\|^{2}+\lambda Q(u)+\gamma R(h)
$$

- Both image and blur regularization do not penalize the solution:

$$
\tilde{u}(x)=z(x), \quad \tilde{h}(x)=\delta(x)
$$

Ragularization favors blur

Ragularization favors blur

We need tricks

- To avoid "no-blur" solution:
- Artificially sparsify image
- Removing spikes
- Sharpening
- Adjusting priors on the fly
- Hierarchical approach
- Learn image prior with CNN

Chan TIP1998
Shan SigGraph08
Cho SigGraph 09
Xu ECCV09, 13
Almeida TIP10
Krishnan 11
Zhong 13
Sun 13
Michael 14
Perrone 15
Pan 16
Li CVPR18

Removing spiky objects

Reconstructed image with small objects removed

Artificial sharpening

Blurred image

Hierarchical deconvolution

Example of VB blind deconvolution

Blurred image $z(x)$

Reconstructed image $u(x)$

Multi-Channel Acquisition Model

original image

$$
\left[\begin{array}{lll}
u & * & \left.h_{k}\right](x)
\end{array}+n_{k}(x) \quad=z_{k}(x)\right.
$$

Blind Deconvolution

- Acquisition model

$$
z_{k}=\left(h_{k} * u\right)+n_{k}
$$

- Minimization problem

$$
F\left(u,\left\{h_{k}\right\}\right)=\frac{1}{2} \sum_{k=1}^{K} \int_{\Omega}\left|z_{k}-h_{k} * u\right|^{2} d x+\lambda \int_{\Omega} \phi(|\nabla u|) d x+\gamma R\left(\left\{h_{k}\right\}\right)
$$

Blur Regularization Term

$$
R\left(\left\{h_{i}\right\}\right)=\frac{1}{2} \sum_{1 \leq i, j \leq K}\left\|z_{i} * h_{j}-z_{j} * h_{i}\right\|^{2}
$$

Alternating Minimization

Minimization of $F\left(u,\left\{h_{k}\right\}\right)$ over u and h_{k} alternates.

Input: Blurred images and estimation of the blur size

Output: Reconstructed image and the blurs

Astronomical Imaging

Degraded images

Reconstructed image

Multichannel Deconvolution

Super-resolution

Super-resolution

Super-resolution

Sub-pixel shifts

Interpolation on a high-resolution grid

Superresolution

- Acquisition model

$$
z_{k}=D\left(h_{k} * u\right)+n_{k}
$$

- Minimization problem

$$
F\left(u,\left\{h_{k}\right\}\right)=\frac{1}{2} \sum_{k=1}^{K} \int_{\Omega}\left|z_{k}-D\left(h_{k} * u\right)\right|^{2} d x+\lambda \int_{\Omega} \phi(|\nabla u|) d x+\gamma R\left(\left\{h_{k}\right\}\right)
$$

Superresolution

Superresolved image (2x)

Optical zoom (ground truth)

SR limits

original

8 images

SR 2x

SR 3x

Superresolution of Video

Interpolated video

Super-resolved video (2x)

Interpolated video
Super-resolved video (2x)

Space-variant blur

Camera Motion

Object Motion

Space-variant Out-of-focus Blur

Tomographic Reconstruction

- CT
- SPECT
- MRI
- PET

X-rays

gamma rays
electromagnetic waves
positron-electron annihilation

Tomography Principle

- 1D projections of 2D objects

Sinogram

- Projections (sinogram) = Radon Transform
- Reconstruction \rightarrow Inverse Radon (Filtered Back Projection)

Back Projection

Projection-Slice Theorem

Variational Reconstruction

- R... operator performing projections
- z ... sinogram
- Our optimization problem is

$$
F(u)=\frac{1}{2} \int_{\Omega}|z-R u|^{2} d x+\lambda \int_{\Omega} \phi(|\nabla u|) d x
$$

Variational
Reconstruction

End

