Optical Flow

Motion Detection



Image Sequence

Sequence of images contains information about the scene,
We want to estimate motion (using variational formulation)



2D Motion Field

@ 3D motion field

2D motion field L /

Projection on the L
image plane of the 3D |mage intensity
velocity of the scene

Optical center



Homography

* projective transform

* Pinhole camera
— Rotating camera and arbitrary 3D scene
— Arbitrarily moving camera and planar scene
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Optical Flow

What we are able to perceive is just an apparent motion, called

Optical Flow
(motion, observable only through intensity variations)
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Intensity remains constant — No object motion, moving light
no motion is perceived source produces intensity variations



Brightness Constancy

* Intensity of a point keeps constant along its
trajectory (reasonable for small displacements)

[(zx) ... intensity of the pixel x=(x ,x ) at 7

Trajectory (2,x(¢)) starts at x = x(¢ )
I(t,x(¢t)) = I(to,x0) Vi

Differentiate with respect to time

dx ol
i v/ —
dt V + 5¢ O at ¢ t()

. L dx
Optical flow as the velocity field v(to) = g(to)



Discrete version

* Taylor:
L(x)=1(x+Vv)=1(x)+Vv-VI(x)

O — [Q(X) — Il(X) + Vv - VIQ(X)
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Optical Flow Constraint

* Given: sequence I(z,x)
» Find: velocity v(x)=[v (x),v(x)] such that

v(x)-VI(t,x)+ L:(t,x) =0

* Velocity field has 2 components but we
have one scalar equation => ?7?



Aperture problem




Solving Aperture Problem

e Second order derivative constraint

* Least-square fit (constant in spatial,
temporal or spectral domain)

* Regularization



Second order constraint

* Conservation of the image gradient along

the trajectory (7,x(7))

dV1
—(6,x(t)) =0
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* No rotation and/or dilation,
sensitive to noise



Least-square fit

* Velocities constant in small window w

min F'(v) = min /-(V(:Uo) VI + I)%dx

Weighted
window . OFC
— Too local, no global regularity

* Parametric velocity model

min F(v) = min F(v) V(x):{
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— Restrictive but e.g. homography is common
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Parametric velocity model
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Regularizing the Velocity Field

* Minimization problem

F(v) = /Q(VI v+ I,)*dx

/

Data Regularization

t
erm Weighting term

parameter

O(s) =35>, o(s)=Vs2+e



Example

* Synthetic example




Homogeneous term

* No texture = no gradient — no way to
estimate correctly the flow field

e So we force it to be zero

. 2
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Example

* With the homogeneous term




Security Camera
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Cardiac MR example




Hierarchical OF
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