
Optimization Methods



Problem specification

Suppose we have a cost function (or objective function)

Our aim is to find values of the parameters (decision variables) x that 
minimize this function

Subject to the following constraints:

• equality:

• nonequality:

If we seek a maximum of f(x) (profit function) it is equivalent to seeking 
a minimum of –f(x)



Types of minima

• which of the minima is found depends on the starting

point
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Iterative Optimization Algorithm 

• Start at x0, k = 0.

1. Compute a search direction pk

2. Compute a step length αk, such that f(xk + αk pk ) < f(xk)

3. Update xk+1 = xk + αk pk

4. Check for convergence (stopping criteria) 

e.g. df/dx = 0 or

Reduces optimization in N dimensions to a series of (1D) line minimizations

k = k+1



Contractive Mapping

• Lipschitz constant L<1



Unconstrained univariate optimization

How to determine the minimum?

• Search methods (Dichotomous, Fibonacci, Golden-Section)

• Approximation methods

1. Polynomial interpolation

2. Newton method

• Combination of both (alg. of Davies, Swann, and Campey) 

• Inexact Line Search (Fletcher)



1D function

As an example consider the function

(Evaluation of the function is expensive.)



Search methods

• Start with the interval (“bracket”) [xL, xU] such that the 

minimum x* lies inside.

• Evaluate f(x) at two point inside the bracket.

• Reduce the bracket.

• Repeat the process.   

• Can be applied to any function and differentiability is not 

essential. 
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Dichotomous

Fibonacci: 

1    1    2    3    5    8 …

Ik+5 Ik+4 Ik+3 Ik+2 Ik+1 Ik

Golden-Section Search

divides intervals by 

K = 1.6180



Polynomial interpolation

• Bracket the minimum.

• Fit a quadratic or cubic polynomial which 
interpolates f(x) at some points in the interval.

• Jump to the (easily obtained) minimum of the 
polynomial.

• Throw away the worst point and repeat the 
process.



Polynomial interpolation

• Quadratic interpolation using 3 points, 2 iterations

• Other methods to interpolate?

– 2 points and one gradient

– Cubic interpolation



Newton method

• Expand f(x) locally using a Taylor series.

• Find the δx which minimizes this local quadratic 

approximation.

• Update x.

Fit a quadratic approximation to f(x) using both gradient and 

curvature information at x.



Newton method

• avoids the need to bracket the root

• quadratic convergence (decimal accuracy doubles 

at every iteration)



Newton method

• Global convergence of Newton’s method is poor.

• Often fails if the starting point is too far from the minimum.

• in practice, must be used with a globalization strategy 

which reduces the step length until function decrease is 

assured



Extension to N (multivariate) dimensions

• How big N can be?

– problem sizes can vary from a handful of parameters to 

many thousands 

• We will consider examples for N=2, so that cost 

function surfaces can be visualized.



Taylor expansion 

A function may be approximated locally by its Taylor series 

expansion about a point x*

where the gradient   is the vector

and the Hessian H(x*) is the symmetric matrix



Quadratic functions 

• The vector g and the Hessian H are constant. 

• Second order approximation of any function by the Taylor 

expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum 

Expand f(x) about a stationary point x* in direction p

since at a stationary point  

At a stationary point the behavior is determined by H



• H is a symmetric matrix, and so has orthogonal 

eigenvectors

• As |α| increases, f(x* + αui) increases, decreases 

or is unchanging according to whether λi is 

positive, negative or zero



Examples of quadratic functions 

Case 1: both eigenvalues positive

with 

minimum

positive 

definite



Examples of quadratic functions 

Case 2: eigenvalues have different sign

with 

saddle point

indefinite



Examples of quadratic functions 

Case 3: one eigenvalues is zero

with 

parabolic cylinder

positive 

semidefinite



Optimization for quadratic functions 

Assume that H is positive definite

There is a unique minimum at

If N is large, it is not feasible to perform this inversion directly.



How to find descent directions?

• Start at x0, k = 0.

1. Compute a search direction pk

2. Compute a step length αk, such that f(xk + αk pk ) < f(xk)

3. Update xk+1 = xk + αk pk

4. Check for convergence (stopping criteria)



Steepest descent 

• Basic principle is to minimize the N-dimensional function 

by a series of 1D line-minimizations:

• The steepest descent method chooses pk to be parallel to 

the gradient

• Step-size αk is chosen to minimize f(xk + αkpk).

For quadratic forms there is a closed form solution:

Prove it!



Steepest descent 

• The gradient is everywhere perpendicular to the contour 
lines.

• After each line minimization the new gradient is always 
orthogonal to the previous step direction (true of any line 
minimization).

• Consequently, the iterates tend to zig-zag down the 
valley in a very inefficient manner



Conjugate gradient 

• Each pk is chosen to be conjugate to all previous search 

directions with respect to the Hessian H:

• The resulting search directions are mutually linearly 

independent.

• Remarkably, pk can be chosen using only knowledge of 

pk-1, , and 

Prove it!



Conjugate gradient 

• An N-dimensional quadratic form can be minimized in at 

most N conjugate descent steps.

• 3 different starting points.

• Minimum is reached in exactly 2 steps.



Powell’s Algorithm

• Conjugate-gradient method that does not require 

derivatives

• Conjugate directions are generated through a series of 

line searches

• N-dim quadratic function is minimized with N(N+1) line 

searches



Optimization of general functions 

E.g., Rosenbrock’s function:

Minimum at [1, 1]



Steepest descent

• The 1D line minimization must be performed using one 
of the earlier methods (usually cubic polynomial 
interpolation)

• The zig-zag behaviour is clear in the zoomed view

• The algorithm crawls down the valley



Conjugate gradient

• Again, an explicit line minimization must be used at 

every step

• The algorithm converges in 98 iterations

• Far superior to steepest descent



Newton method 

Expand f(x) by its Taylor series about the point xk

where the gradient is the vector

and the Hessian is the symmetric matrix



Newton method 

For a minimum we require that , and so

with solution . This gives the iterative update

• If f(x) is quadratic, then the solution is found in one step.

• The method has quadratic convergence (as in the 1D case).

• The solution is guaranteed to be a downhill direction.

• Rather than jump straight to the minimum, it is better to perform a line 

minimization which ensures global convergence

• If H=I then this reduces to steepest descent.



Newton method - example

• The algorithm converges in only 18 iterations compared 
to the 98 for conjugate gradients.

• However, the method requires computing the Hessian 
matrix at each iteration – this is not always feasible



Quasi-Newton methods 

• If the problem size is large and the Hessian matrix is 

dense then it may be infeasible/inconvenient to compute 

it directly.

• Quasi-Newton methods avoid this problem by keeping a 

“rolling estimate” of H(x), updated at each iteration using 

new gradient information.

• Common schemes are due to Broyden, Goldfarb, 

Fletcher and Shanno (BFGS), and also Davidson, 

Fletcher and Powell (DFP).

• The idea is based on the fact that for quadratic functions 

holds

and by accumulating gk’s and xk’s we can calculate H.



BFGS example 

• The method converges in 34 iterations, compared to 

18 for the full-Newton method



Non-linear least squares 

• It is very common in applications for a cost 

function f(x) to be the sum of a large number of 

squared residuals

• If each residual depends non-linearly on the 

parameters x then the minimization of f(x) is a 

non-linear least squares problem.



Non-linear least squares 

• The M × N Jacobian of the vector of residuals r is defined 

as

• Consider

• Hence



Non-linear least squares 

• For the Hessian holds

• Note that the second-order term in the Hessian is multiplied by the 

residuals ri.

• In most problems, the residuals will typically be small.

• Also, at the minimum, the residuals will typically be distributed with 

mean = 0.
• For these reasons, the second-order term is often ignored.

• Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton 

approximation



Gauss-Newton example 

• The minimization of the Rosenbrock function

• can be written as a least-squares problem with 

residual vector



Gauss-Newton example 

• minimization with the Gauss-Newton approximation with 
line search takes only 11 iterations



Levenberg-Marquardt Algorithm 

• For non-linear least square problems

• Combines Gauss-Newton with Steepest Descent

• Fast convergence even for very “flat” functions

• Descend direction :

– Newton - Steepest Descent

Gauss-Newton:



Comparison 

CG Newton

Quasi-Newton Gauss-Newton



Derivative-free optimization

Downhill

simplex

method



Downhill Simplex



Comparison 

CG Newton

Quasi-Newton Downhill Simplex



Rates of Convergence 

x* … minimum

p … order of convergence

β … convergence ratio

Linear conv.:  p=1, β<1

Superlinear conv.: p=1, β=0 or p=>2

Quadratic conv.: p=2



Constrained Optimization

Subject to:

• Equality constraints:

• Nonequality constraints:

• Constraints define a feasible region, which is nonempty.

• The idea is to convert it to an unconstrained optimization.



Equality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 

linear combination of the gradients of ai(x) with 

Lagrange multipliers as the coefficients. 



f3  > f2 > f1

f3  > f2 > f1

f3  > f2 > f1

is not a minimizer

x* is a minimizer, λ*>0

x* is a minimizer, λ*<0

x* is not a minimizer



3D Example 



3D Example 

f(x) = 3

Gradients of constraints and objective function are linearly independent.



3D Example 

f(x) = 1

Gradients of constraints and objective function are linearly dependent.



Inequality constraints

• Minimize f(x) subject to: for

• The gradient of f(x) at a local minimizer is equal to the 

linear combination of the gradients of cj(x), which are 

active ( cj(x) = 0 )

• and Lagrange multipliers must be positive, 



No active constraints at 

x*, 

x* is not a minimizer, μ<0

x* is a minimizer, μ>0

f3  > f2 > f1

f3  > f2 > f1

f3  > f2 > f1



Lagrangien

• We can introduce the function (Lagrangian)

• The necessary condition for the local minimizer is  

and it must be a feasible point (i.e. constraints are 

satisfied). 

• These are Karush-Kuhn-Tucker conditions



Dual Problem

Primal problem: minimize 

subject to:

Lagrangian:

Dual function: is always concave!

Dual problem: maximize   

subject to:

If f and c convex  sup g = inf f (almost always)



• Linear functions:



Toy Case

Solution is a saddle point



Dual Function



Proximal operator

• Problems of type:

• If closed proper convex 

=>

strictly convex 

=> 

unique minimizer

e.g. indicator function



Examples of prox operators

• L1 norm -> 

soft thresholding

• Indicator function of a convex set C ->

projection onto C  



Alternating Direction Method of Multipliers

• f, g convex but not necessary smooth

• e.g.: g is L1 norm or positivity constraint

Deconvolution with TV regularization

Gabay et al., 1976 



Alternating Direction Method of Multipliers

• f, g convex but not necessary smooth

• e.g.: g is L1 norm or positivity constraint

• variable splitting

• Augmented Lagrangian:

Gabay et al., 1976 



Alternating Direction Method of Multipliers

• ADMM

x minimization

z minimization

dual update



ADMM with scaled dual variable

• combine linear and quadratic terms

with

• ADMM (scaled dual form):



ADMM - example

• Deconvolution with TV regularization

• Augmented Lagrangian

• ADMM
1) System of linear equations (CG):

2) Proximal operator (soft-thresholding)

3)





Quadratic Programming (QP)

• Like in the unconstrained case, it is important to study 

quadratic functions. Why?

• Because general nonlinear problems are solved as a 

sequence of minimizations of their quadratic 

approximations.

• QP with constraints

Minimize

subject to linear constraints.

• H is symmetric and positive semidefinite.



QP with Equality Constraints

• Minimize

Subject to:

• Ass.: A is p × N and has full row rank (p<N)

• Convert to unconstrained problem by variable 

elimination:

Minimize 

This quadratic unconstrained problem can be solved, e.g., 

by Newton method.

Z is the null space of A

A+ is the pseudo-inverse.



QP with inequality constraints

• Minimize

Subject to:

• First we check if the unconstrained minimizer 

is feasible.

If yes we are done. 

If not we know that the minimizer must  be on the 

boundary and we proceed with an active-set method.

• xk is the current feasible point 

• is the index set of active constraints at xk

• Next iterate is given by



Active-set method

• How to find dk?

– To remain active thus

– The objective function at xk+d becomes

where

• The major step is a QP sub-problem

subject to:

• Two situations may occur: or 



Active-set method

•

We check if KKT conditions are satisfied

and

If YES we are done.

If NO we remove the constraint from the active set      with the most 

negative      and solve the QP sub-problem again but this time with 

less active constraints.

•

We can move to but some inactive constraints 

may be violated on the way. 

In this case, we move by till the first inactive constraint 

becomes active, update   , and solve the QP sub-problem again 

but this time with more active constraints.



General Nonlinear Optimization

• Minimize f(x)

subject to:

where the objective function and constraints are 

nonlinear.

1. For a given approximate Lagrangien by 

Taylor series → QP problem

2. Solve QP → descent direction

3. Perform line search in the direction →

4. Update Lagrange multipliers →

5. Repeat from Step 1.



General Nonlinear Optimization

Lagrangien

At the kth iterate: 

and we want to compute a set of increments:

First order approximation of and constraints:

•

•

•

These approximate KKT conditions corresponds to a QP program



SQP  example

Minimize 

subject to: 



Linear Programming (LP)

• LP is common in economy and is meaningful only if it 

is with constraints.

• Two forms:

1. Minimize 

subject to:

2. Minimize

subject to:

• QP can solve LP.

• If the LP minimizer exists it must be one of the vertices 

of the feasible region.

• A fast method that considers vertices is the Simplex 

method.   

A is p × N and has 

full row rank (p<N)

Prove it!


