

flusser@utia.cas.cz zitova@utia.cas.cz

www.utia.cas.cz/people/flusser

Prof. Ing. Jan Flusser, DrSc. RNDr. Barbara Zitová, Ph.D

Speciální funkce a transformace ve zpracování obrazu

Upozornění

Tento soubor obsahuje veškeré slajdy k předmětu SFTO, část "Momenty", kromě některých reálných experimentů prezentovaných na přednášce. Je určen výhradně ke studijním účelům. Jakékoliv jiné použití, umísťování na web nebo jiné šíření souboru nebo jednotlivých snímků je možné jen s výslovným souhlasem autorů.

Slajdy nejsou samostatným studijním materiálem, nenahrazují přednášku a nepokrývají všechny požadavky ke zkoušce.

© Jan Flusser a Barbara Zitová, 2010

Důležité informace

• Rozsah: LS, 2+0, Zk

- http://zoi.utia.cz/teaching
- Moment homepage <u>http://staff.utia.cas.cz/zitova/tutorial/icip07.html</u>

Předcházející předměty

- ROZ 1, 2 (FJFI)
- DZO (MFF)

Souběžné a navazující předměty

- Speciální seminář NPGR022 (MFF)
- Variační metody NPGR029 (MFF)

Hlavní části

• Waveletová transformace (B. Zitová)

• Momentové funkce (J. Flusser)

Moments and Moment Invariants in Pattern Recognition

The Textbook

Wiley, London, 2009

http://zoi.utia.cas.cz/moment_invariants

Object recognition

Recognition (classification) = assigning a pattern/object to one of pre-defined classes

The object is described by its features

Features – measurable quantities, usually form an *n*-D vector in a metric space

Problem formulation

Non-ideal imaging conditions → degradation of the image

$$g = D(f)$$

D - unknown degradation operator

Basic approaches

- Brute force
- Normalized position \rightarrow inverse problem
- Description of the objects by invariants

What are invariants?

Invariants are functionals defined on the image space such that

• I(f) = I(D(f)) for all admissible D

What are invariants?

Example: TRS

What are invariants?

Invariants are functionals defined on the image space such that

- I(f) = I(D(f)) for all admissible D
- I(f₁), I(f₂) "different enough" for different f₁, f₂

Discrimination power

Major categories of invariants

Simple shape descriptors

- compactness, convexity, elongation, ...
- Transform coefficient invariants
- Fourier descriptors, wavelet features, ...

Point set invariants

- positions of dominant points
- **Differential invariants**
- derivatives of the boundary

Moment invariants

What are moment invariants?

Functions of image moments, invariant to certain class of image degradations

- Rotation, translation, scaling
- Affine transform
- Elastic deformations
- Convolution/blurring
- Combined invariants

What are moments?

Moments are "projections" of the image function into a polynomial basis

f(x, y) – piecewise continuous image function defined on bounded $\Omega \subset \mathcal{R} \times \mathcal{R}$ $\{\mathcal{P}_{pq}(x, y)\}$ – set of polynomials defined on Ω

$$M_{pq} = \int \int \mathcal{P}_{pq}(x, y) f(x, y) dx dy$$

What are moments?

Moments are not "linear-algebraic coordinates" of the image in the polynomial basis

$$f(x,y) \neq \Sigma M_{pq} \mathcal{P}_{pq}(x,y)$$

The most common moments

Geometric moments

$$m_{pq}^{(f)} = \int_{\mathbb{R}^2} x^p y^q f(x, y) dx dy$$

(p + q) - the order of the moment

Geometric moments – the meaning

$$m_{pq}^{(f)} = \int_{\mathbb{R}^2} x^p y^q f(x, y) dx dy$$

0th order - area 1st order - center of gravity $x_t = \frac{m_{10}}{m_{00}}, \qquad y_t = \frac{m_{01}}{m_{00}}$

2nd order - moments of inertia 3rd order - skewness

Geometric moments

$$m_{pq}^{(f)} = \int_{\mathbb{R}^2} x^p y^q f(x, y) dx dy$$

Uniqueness theorem

If f(x, y) is piecewise continuous and Ω is bounded then

$$f(x,y) \iff \{m_{pq}\} \quad p,q=0,1,2,\cdots,\infty$$

Invariants to translation

Central moments

$$\mu_{pq}^{(f)} = \int_{R^2} (x - x_t)^p (y - y_t)^q f(x, y) dx dy$$
$$x_t = m_{10}/m_{00}, \quad y_t = m_{01}/m_{00}$$

$$x' = x + a$$
$$y' = y + b$$

Invariants to translation

Central moments

$$\mu_{pq}^{(f)} = \int_{R^2} (x - x_t)^p (y - y_t)^q f(x, y) dx dy$$
$$x_t = m_{10}/m_{00}, \quad y_t = m_{01}/m_{00}$$

$$\mu_{pq} = \sum_{k=0}^{p} \sum_{j=0}^{q} {p \choose k} {q \choose j} (-1)^{k+j} x_t^k y_t^j m_{p-k,q-j}$$

$$\begin{aligned} x' &= s \cdot x + a \\ y' &= s \cdot y + b \end{aligned}$$

Normalized central moments

$$\nu_{pq} = \frac{\mu_{pq}}{\mu_{00}^w} \qquad w = \frac{p+q}{2} + 1$$

Normalized central moments

Normalized central moments

Invariants to rotation

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Invariants to rotation M.K. Hu, 1962 - 7 invariants of the 3rd order

$$\phi_1 = \mu_{20} + \mu_{02}$$

$$\phi_2 = (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2$$

$$\phi_3 = (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2$$

$$\phi_4 = (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2$$

$$\phi_5 = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2) + (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2)$$

$$\phi_6 = (\mu_{20} - \mu_{02})((\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2) + 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03})$$

$$\phi_7 = (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2) - (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2)$$

Hard to find, easy to prove:

$$\mu'_{20} = \cos^2 \theta \cdot \mu_{20} + \sin^2 \theta \cdot \mu_{02} - \sin 2\theta \cdot \mu_{11}$$
$$\mu'_{02} = \sin^2 \theta \cdot \mu_{20} + \cos^2 \theta \cdot \mu_{02} + \sin 2\theta \cdot \mu_{11}$$
$$\mu'_{11} = \frac{1}{2} \sin 2\theta \cdot (\mu_{20} - \mu_{02}) + \cos 2\theta \cdot \mu_{11}$$

Aircraft recognition (Dudani et al., 1977)

Invariants to TRS

In any rotation invariant use the normalized moments instead of central ones

Drawbacks of the Hu's invariants

Dependence

Incompleteness

Insufficient number \rightarrow low discriminability

Consequence of the incompleteness of the Hu's set

The images not distinguishable by the Hu's set

General construction of rotation invariants

Complex moment

$$c_{pq}^{(f)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + iy)^p (x - iy)^q f(x, y) dx dy$$
Basic relations between the moments

$$c_{pq} = \sum_{k=0}^{p} \sum_{j=0}^{q} \binom{p}{k} \binom{q}{j} (-1)^{q-j} \cdot i^{p+q-k-j} \cdot m_{k+j,p+q-k-j}$$

$$m_{pq} = \frac{1}{2^{p+q}i^q} \sum_{k=0}^p \sum_{j=0}^q \binom{p}{k} \binom{q}{j} (-1)^{q-j} \cdot c_{k+j,p+q-k-j}$$

$$c_{qp} = c_{pq}^*$$

Examples

$$c_{00} = m_{00}$$

$$c_{10} = m_{10} + im_{01}$$

$$c_{20} = m_{20} - m_{02} + 2im_{11}$$

$$c_{11} = m_{20} + m_{02}$$

Complex moments in polar coordinates

$$c_{pq}^{(f)} = \int_0^\infty \int_0^{2\pi} r^{p+q+1} e^{i(p-q)\theta} f(r,\theta) d\theta dr$$

Rotation property of complex moments

$$f'(r,\theta) = f(r,\theta + \alpha)$$

$$c'_{pq} = e^{-i(p-q)\alpha} \cdot c_{pq}$$

I

The magnitude is preserved, the phase is shifted by $(p-q)\alpha$.

Invariants are constructed by a proper phase cancellation

Rotation invariants from complex moments

$$I = \prod_{i=1}^{n} c_{p_i q_i}^{k_i} \qquad \sum_{i=1}^{n} k_i (p_i - q_i) = 0$$

Examples:

$$c_{11}, c_{20} \cdot c_{02}, c_{20} \cdot c_{12}^2, \cdots, c_{pp}, c_{pq} \cdot c_{qp}, \cdots$$

How to select a complete and independent subset (basis) of the rotation invariants?

Construction of the basis

$$\forall p,q: \quad \Phi(p,q) \equiv c_{pq} c_{q_0 p_0}^{p-q}$$

$$\begin{array}{l} p+q \leq r \\ p \geq q \\ p_{0}+q_{0} \leq r \\ p_{0}-q_{0} = 1 \\ c_{p_{0}q_{0}} \neq 0 \end{array}$$

This is the basis of invariants up to the order *r*

The basis of the 3rd order

$$p_0 = 2, q_0 = 1$$

$$\Phi(1,1) = c_{11} \Phi(2,1) = c_{21}c_{12} \Phi(2,0) = c_{20}c_{12}^2 \Phi(3,0) = c_{30}c_{12}^3$$

This is basis B_3 (contains six real elements)

Numerical properties

$$\Phi(2,0) = c_{20}c_{12}^2$$

Comparing B_3 to the Hu's set

$$\phi_{1} = c_{11}$$

$$\phi_{2} = c_{20}c_{02}$$

$$\phi_{3} = c_{30}c_{03}$$

$$\phi_{4} = c_{21}c_{12}$$

$$\phi_{5} = \operatorname{Re}(c_{30}c_{12}^{3})$$

$$\phi_{6} = \operatorname{Re}(c_{20}c_{12}^{2})$$

$$\phi_{7} = \operatorname{Im}(c_{30}c_{12}^{3})$$

Drawbacks of the Hu's invariants are evident now

Dependence

Incompleteness

$$m_{11}^2 = \frac{1}{4}(\phi_2 - (\frac{\phi_6}{\phi_4})^2)$$

Comparing B_3 to the Hu's set - Experiment

The images distinguishable by B_3 but not by Hu's set

Inverse problem

$$\Phi(p_0, q_0) = c_{p_0 q_0} c_{q_0 p_0}
\Phi(0, 0) = c_{00}
\Phi(1, 0) = c_{10} c_{q_0 p_0}
\Phi(2, 0) = c_{20} c_{q_0 p_0}^2
\Phi(1, 1) = c_{11}
\Phi(3, 0) = c_{30} c_{q_0 p_0}^3$$

$$\Phi(r,0) = c_{r0}c_{q_0p_0}^r$$

$$\Phi(r-1,1) = c_{r-1,1}c_{q_0p_0}^{r-2}$$

Is it possible to resolve this system?

Solution to the inverse problem

The image orientation cannot be recovered in principle \rightarrow one degree of freedom \rightarrow let us constrain $c_{p_0q_0}$ to be **real and positive**. Then

$$c_{p_0q_0} = \sqrt{\Phi(p_0, q_0)} \\ c_{pq} = \frac{\Phi(p, q)}{c_{q_0p_0}^{p-q}}$$

TSR normalization using moments

Normalized position to scaling

Normalized position to translation

Normalized position to rotation

Constraint

Rotation angle

$$\tan 2\theta = \frac{-2\mu_{11}}{\mu_{20} - \mu_{02}}$$

Removing ambiguity

Additional constraints

$$\begin{array}{l} \mu_{20}' \geq \mu_{02}' \\ \mu_{30}' \geq 0 \end{array}$$

Moments after normalization

$$\mu_{20}' \equiv \lambda_1 = \left[(\mu_{20} + \mu_{02}) + \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2} \right]/2$$

$$\mu_{02}' \equiv \lambda_2 = \left[(\mu_{20} + \mu_{02}) - \sqrt{(\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2} \right]/2$$

The moments of the normalized image are invariants. Compare to the Hu's set !

Moments after normalization

$$\mu_{20}' = (\phi_1 + \sqrt{\phi_2})/2$$

$$\mu_{02}' = (\phi_1 - \sqrt{\phi_2})/2$$

An alternative approach to constructing invariants

Reference ellipse

An ellipse having the same 2nd order moments as the original object

a, *b* – major/minor semiaxis

Normalization as an eigenproblem

$$M = \begin{pmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{pmatrix}$$

$$M' = G^T M G = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \mu'_{20} & 0 \\ 0 & \mu'_{02} \end{pmatrix}$$

 $|M - \lambda I| = 0$

Constraint

Constraint

$$c_{st}$$
 real and positive \Longrightarrow
 $\alpha = \frac{1}{s-t} \cdot \arctan\left(\frac{\text{Im}c_{st}}{\text{Re}c_{st}}\right)$

If s = 2, $t = 0 \rightarrow$ traditional normalization $c_{20} = m_{20} - m_{02} + 2im_{11}$

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Constraint

 c_{st} real and positive \Longrightarrow

Unambiguous only if s - t = 1

Rotation invariants via normalization

- Theoretically equivalent to the previous construction
- Leads to different basis (more complicated formulas)
- No need to actually transform the object

Pseudoinvariants

How do the rotation invariants behave under mirror reflection?

$$\overline{f}(x,y) = f(x,-y)$$

Pseudoinvariants

How do the rotation invariants behave under mirror reflection?

$$\overline{f}(x,y) = f(x,-y)$$

Pseudoinvariants

How do the rotation invariants behave under mirror reflection?

$$\overline{f}(x,y) = f(x,-y)$$

 $\overline{c_{pq}} = c_{pq}^*$

$$\overline{\Phi(p,q)} = c_{pq} c_{q_0 p_0}^{p-q} = c_{pq}^* \cdot (c_{q_0 p_0}^*)^{p-q} = \Phi(p,q)^*$$

Aspect-ratio invariants

$$\begin{aligned} x' &= a \cdot x \\ y' &= b \cdot y \end{aligned}$$

$$\mu'_{pq} = a^{p+1}b^{q+1}\mu_{pq}$$

$$A_{pq} = \frac{\mu_{00}^{(p+q+2)/2}}{\mu_{20}^{(p+1)/2} \cdot \mu_{02}^{(q+1)/2}} \cdot \mu_{pq}$$

Aspect-ratio invariants

Invariants to contrast changes

$$f'(x,y) = a \cdot f(x,y)$$

$$\mu'_{pq} = a \cdot \mu_{pq}$$

 $C_{pq} = \frac{\mu_{pq}}{\mu_{00}}$

Invariants to contrast and TRS

$$\Phi'(p,q) = a^{p-q+1}\Phi(p,q)$$

 $\widetilde{c_{pq}}' = a^{-\frac{p+q}{2}} \widetilde{c_{pq}}$

$$\Gamma(p,q) = \frac{\Phi(\widetilde{p,q})}{|\widetilde{c_{pq}}| \cdot \Phi(\widetilde{p_0,q_0})^{\frac{p-q}{2}}}$$

$$\widetilde{\Phi(p,q)}' = a^{-\frac{(p_0+q_0)(p-q)+(p+q)}{2}} \widetilde{\Phi(p,q)}$$

Invariants to contrast and TRS

Important in medical imaging (MRI, CT, ...) and stereovision

3D geometric moments

$$m_{pqs} = \int \int \int x^p y^q z^s f(x, y, z) dx dy dz$$

3D central moments

$$\mu_{pqs} = \int \int (x - x_t)^p (y - y_t)^q (z - z_t)^s f(x, y, z) dx dy dz$$

3D scale-normalized moments

$$\nu_{pqs} = \frac{\mu_{pqs}}{\mu_{000}^w} \qquad w = \frac{p+q+s}{3} + 1$$

Simple 3D rotation invariants

$$\phi_1 = \mu_{200} + \mu_{020} + \mu_{002}$$

$$\phi_2 = \mu_{020}\mu_{002} + \mu_{200}\mu_{002} + \mu_{200}\mu_{020} \\ -(\mu_{011}^2 + \mu_{101}^2 + \mu_{110}^2)$$

Theory based on spherical harmonics

Documented applications of TRS moment invariants

- Recognition of aircraft and ship silhouettes
- Character/digit/symbol recognition
- Recognition of components on an assembly belt
- Image registration (medical, satellite, ...)
- Normalization of database images

Back to the rotation invariants in 2D

$$I = \prod_{i=1}^{n} c_{p_i q_i}^{k_i} \qquad \sum_{i=1}^{n} k_i (p_i - q_i) = 0$$

Recognizing symmetric objects

N-fold rotation symmetry

N-fold rotation symmetry: the object repeats itself when rotating by $2\pi j/N$ for all $j = 1, \dots, N$.

Examples of *N*-fold RS

N=1 N=2 N=3 N=4 $N=\infty$

Qestion: *N*-fold symmetry versus axial symmetry

Axial symmetry S \rightarrow N-fold symmetry, S=N

N-fold symmetry → no axial symmetry or S=N

Difficulties with symmetric objects

Many moments and many invariants are zero

If f(x, y) has N-fold rotation symmetry then $c_{pq} = 0$ for every p, q such that (p - q)/N is not an integer.

Proof

$$c'_{pq} = e^{-i(p-q)\alpha} \cdot c_{pq}$$

$$\alpha = 2\pi/N$$

$$c'_{pq} = e^{\frac{-2\pi i(p-q)}{N}} \cdot c_{pq}$$

Proof (continued)

$$c'_{pq} = c_{pq} \qquad \Rightarrow \qquad c_{pq} = 0 \quad \lor \quad e^{\frac{-2\pi i(p-q)}{N}} = 1$$

If (p-q)/N is not an integer then $e^{\frac{-2\pi i(p-q)}{N}} \neq 1$

$$\Rightarrow c_{pq} = 0 \square$$

Difficulties with symmetric objects

The greater *N*, the less nontrivial invariants

Particularly

- N = 1 (no symmetry) \implies previous case
- N = 2 (central symmetry) \implies only evenorder invariants exist
- $N = \infty$ (circular symmetry) \Longrightarrow only $\Phi(p, p) \equiv c_{pp}$

Difficulties with symmetric objects

It is very important to use only non-trivial invariants

The choice of appropriate invariants (basis of invariants) depends on *N*

The basis for *N*-fold symmetric objects

Generalization of the theorem about the basis

$$\forall p,q: \qquad \Phi(p,q) \equiv c_{pq} c_{q_0 p_0}^k$$

$$\begin{array}{ll} k = (p-q)/N & \text{is an integer} \\ p+q \leq r \\ p \geq q \\ p_0+q_0 \leq r \\ p_0-q_0 = N \\ c_{p_0q_0} \neq 0 \end{array}$$

 $\langle \mathcal{B} \rangle$ – all rotation invariants generated from \mathcal{B}

•
$$M, N$$
 finite, L – least common multiple
 $\langle \mathcal{B}_M \rangle \cap \langle \mathcal{B}_N \rangle = \langle \mathcal{B}_L \rangle$
If M/N is integer then $\langle \mathcal{B}_M \rangle \subset \langle \mathcal{B}_N \rangle$

$$\bigcap_{N=1}^{\infty} \langle \mathcal{B}_N \rangle = \langle \mathcal{B}_\infty \rangle$$

$$|\mathcal{B}_N| = \sum_{j=0}^n [\frac{r-jN+2}{2}]$$
 where $n = [r/N]$

$$|\mathcal{B}_{\infty}| = \left[\frac{r+2}{2}\right]$$

5 objects with N = 3

Bad choice: $p_0 = 2$, $q_0 = 1$

Optimal choice: $p_0 = 3$, $q_0 = 0$

2 objects with N = 12 objects with N = 22 objects with N = 31 object with N = 42 objects with $N = \infty$

Bad choice: $p_0 = 2$, $q_0 = 1$

Recognition of symmetric objects – Experiment 2 Better but not optimal choice: $p_0 = 4$, $q_0 = 0$

Theoretically optimal choice: $p_0 = 12$, $q_0 = 0$

Recognition of symmetric objects – Experiment 2 The best choice: mixed orders

Normalization of symmetric objects by complex moments

Constraint

 c_{st} real and positive \Longrightarrow $\alpha = \frac{1}{s-t} \cdot \arctan\left(\frac{\mathrm{Im}c_{st}}{\mathrm{Re}c_{st}}\right)$

c_{st} must be non-zero !

Invariants to affine transform

What is affine transform?

$$u = a_0 + a_1 x + a_2 y$$
$$v = b_0 + b_1 x + b_2 y$$

Why is affine transform important?

Affine transform is a good approximation of projective transform

$$u = \frac{a_0 + a_1 x + a_2 y}{1 + c_1 x + c_2 y}$$
$$v = \frac{b_0 + b_1 x + b_2 y}{1 + c_1 x + c_2 y}$$

 Projective transform describes a perspective projection of 3-D objects onto 2-D plane by a central camera

Why not projective moment invariants?

- Do not exist when using any finite set of moments
- Do not exist when using infinite set of (all) moments
- Exist formally as infinite series of moments of both positive and negative indexes

Affine moment invariants

Many ways how to derive them

- Theory of algebraic invariants (Fundamental theorem)
- Graph method
- Image normalization
- Cayley-Aronhold equation
- Hybrid approaches

All methods lead to equivalent invariants ...

... such as

$$I_1 = (\mu_{20}\mu_{02} - \mu_{11}^2)/\mu_{00}^4$$

$$I_{2} = (\mu_{30}^{2}\mu_{03}^{2} - 6\mu_{30}\mu_{21}\mu_{12}\mu_{03} + 4\mu_{30}\mu_{12}^{3} + 4\mu_{03}\mu_{21}^{3} - 3\mu_{21}^{2}\mu_{12}^{2})/\mu_{00}^{10}$$

Two simplest AMI's, frequently cited

AMI's by means of the Fundamental theorem

Binary algebraic form

$$\sum_{k=0}^{p} \begin{pmatrix} p\\k \end{pmatrix} a_k x^{p-k} y^k$$

Algebraic invariant of weight *w*

$$I(a'_0, a'_1, \dots, a'_{p_a}; b'_0, b'_1, \dots, b'_{p_b}; \dots) = J^w I(a_0, a_1, \dots, a_{p_a}; b_0, b_1, \dots, b_{p_b}; \dots)$$

AMI's by means of the Fundamental theorem

Theorem 3.1 (Fundamental theorem of AMIs) If the binary forms of orders p_a , p_b , ... have an algebraic invariant of weight w and degree r

 $I(a'_0, a'_1, \ldots, a'_{p_a}; b'_0, b'_1, \ldots, b'_{p_b}; \ldots) = J^w I(a_0, a_1, \ldots, a_{p_a}; b_0, b_1, \ldots, b_{p_b}; \ldots) ,$

then the moments of the same orders have the same invariant but with the additional factor $|J|^r$:

$$I(\mu'_{p_a0},\mu'_{p_a-1,1},\ldots,\mu'_{0p_a};\mu'_{p_b0},\mu'_{p_b-1,1},\ldots,\mu'_{0p_b};\ldots) = = J^w |J|^r I(\mu_{p_a0},\mu_{p_a-1,1},\ldots,\mu_{0p_a};\mu_{p_b0},\mu_{p_b-1,1},\ldots,\mu_{0p_b};\ldots).$$

AMI's by means of the graph method $(x_1, y_1), (x_2, y_2)$ - arbitrary points $C_{12} = x_1y_2 - x_2y_1$ $C'_{12} = J \cdot C_{12}$

r points, n_{ki} – non-negative integers

$$I(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{k,j=1}^{r} C_{kj}^{n_{kj}} \cdot \prod_{i=1}^{r} f(x_i, y_i) \, \mathrm{d}x_i \, \mathrm{d}y_i$$
AMI's by means of the graph method

$$I(f)' = J^w |J|^r \cdot I(f)$$

where

$$w = \sum_{k,j} n_{kj}$$

Affine Moment Invariants

$$\left(\frac{I(f)}{\mu_{00}^{w+r}}\right)' = (\text{sign } J)^w \left(\frac{I(f)}{\mu_{00}^{w+r}}\right)$$

if w is even \rightarrow "true" invariants

if w is odd \rightarrow "pseudoinvariants"

Simple examples of the AMI's

1)
$$r = 2$$
, $n_{12} = 2$

$$I(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 y_2 - x_2 y_1)^2 f(x_1, y_1) f(x_2, y_2) \, dx_1 \, dy_1 \, dx_2 \, dy_2$$
$$= 2(m_{20}m_{02} - m_{11}^2)$$

$$I_1 = (\mu_{20}\mu_{02} - \mu_{11}^2)/\mu_{00}^4$$

Simple examples of the AMI's

2)
$$r = 3$$
, $n_{12} = 2$, $n_{13} = 2$, $n_{23} = 0$

$$I(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 y_2 - x_2 y_1)^2 (x_1 y_3 - x_3 y_1)^2$$

$$f(x_1, y_1) f(x_2, y_2) f(x_3, y_3) dx_1 dy_1 dx_2 dy_2 dx_3 dy_3$$

$$= m_{20}^2 m_{04} - 4m_{20} m_{11} m_{13} + 2m_{20} m_{02} m_{22} + 4m_{11}^2 m_{22}$$

$$- 4m_{11} m_{02} m_{31} + m_{02}^2 m_{40}$$

$$(x_k, y_k)$$
 – a node of the graph 1 - 2
 C_{kj} – an edge of the graph
 $C_{kj}^{n_{kj}} - n_{kj}$ edges

 $I_2 = (-\mu_{30}^2 \mu_{03}^2 + 6\mu_{30} \mu_{21} \mu_{12} \mu_{03} - 4\mu_{30} \mu_{12}^3 - 4\mu_{21}^3 \mu_{03} + 3\mu_{21}^2 \mu_{12}^2)/\mu_{00}^{10}$

 $I_3 = (\mu_{20}\mu_{21}\mu_{03} - \mu_{20}\mu_{12}^2 - \mu_{11}\mu_{30}\mu_{03} + \mu_{11}\mu_{21}\mu_{12} + \mu_{02}\mu_{30}\mu_{12} - \mu_{02}\mu_{21}^2)/\mu_{00}^7$

$$I_7 = (\mu_{40}\mu_{22}\mu_{04} - \mu_{40}\mu_{13}^2 - \mu_{31}^2\mu_{04} + 2\mu_{31}\mu_{22}\mu_{13} - \mu_{22}^3)/\mu_{00}^9$$

 $I_{352} = (\mu_{20}^5 \mu_{0,10} - 10\mu_{20}^4 \mu_{11}\mu_{19} + 5\mu_{20}^4 \mu_{02}\mu_{28} + 40\mu_{20}^3 \mu_{11}^2 \mu_{28} - 40\mu_{20}^3 \mu_{11}\mu_{02}\mu_{37}$ $+ 10\mu_{20}^3 \mu_{02}^2 \mu_{46} - 80\mu_{20}^2 \mu_{11}^3 \mu_{37} + 120\mu_{20}^2 \mu_{11}^2 \mu_{02}\mu_{46} - 60\mu_{20}^2 \mu_{11} \mu_{02}^2 \mu_{55}$ $+ 10\mu_{20}^2 \mu_{02}^3 \mu_{64} + 80\mu_{20} \mu_{11}^4 \mu_{46} - 160\mu_{20} \mu_{11}^3 \mu_{02}\mu_{55} + 120\mu_{20} \mu_{11}^2 \mu_{02}^2 \mu_{64}$ $- 40\mu_{20} \mu_{11} \mu_{02}^3 \mu_{73} + 5\mu_{20} \mu_{02}^4 \mu_{82} - 32\mu_{11}^5 \mu_{55} + 80\mu_{11}^4 \mu_{02} \mu_{64} - 80\mu_{11}^3 \mu_{02}^2 \mu_{73}$ $+ 40\mu_{11}^2 \mu_{02}^3 \mu_{82} - 10\mu_{11} \mu_{02}^4 \mu_{91} + \mu_{02}^5 \mu_{10,0}) / \mu_{00}^{16}$

Dependence among invariants

• Trivial invariants (zero, identity)

• Reducible invariants (products, linear combinations)

• Irreducible invariants (polynomials, polynomials of products)

• Independent invariants

Dependence among invariants

• Trivial invariants (always zero or identical)

$$I(f) = \int_{-\infty}^{\infty} (x_1 y_2 - x_2 y_1)^3 f(x_1, y_1) f(x_2, y_2) \, dx_1 \, dy_1 \, dx_2 \, dy_2$$

= $m_{30} m_{03} - 3m_{21} m_{21} + 3m_{21} m_{21} - m_{30} m_{03} = 0.$

Removing dependence

For $w \le 12$:

2 533 942 752 invariants (graphs) altogether

2 532 349 394 zero invariants

1 575 126 identical invariants

14 538 linear combinations

2 105 products

1589 irreducible invariants

80 independent invariants

Removing dependence

The most difficult step: How to proceed from irreducible to independent invariants?

Exhaustive search of all possible polynomial dependencies

 $-4I_1^3I_2^2 + 12I_1^2I_2I_3^2 - 12I_1I_3^4 - I_2I_4^2 + 4I_3^3I_4 - I_5^2 = 0.$

$$-16I_1^3I_7^2 - 8I_1^2I_6I_7I_8 - I_1I_6^2I_8^2 + 4I_1I_6I_9^2 + 12I_1I_7I_8I_9 + I_6I_8^2I_9 - I_7I_8^3 - 4I_9^3 - I_{10}^2 = 0$$

The dependencies themselves may be dependent ! (2nd-order dependencies)

Higher-order dependencies

$$S_{1}: \qquad I_{a}^{2} + I_{b}I_{c} = 0, \\S_{2}: \qquad I_{d}^{2} - I_{b}I_{c}^{2} = 0, \\S_{3}: \qquad I_{a}^{4} + 2I_{a}^{2}I_{b}I_{c} + I_{d}^{2}I_{b} = 0.$$

$$S_1^2 + I_b S_2 - S_3 = 0$$

The number of independent invariants:

$$n = n_0 - n_1 + n_2 - n_3 + \dots$$

Numerical experiments with the AMI's

 $I_1 = (\mu_{20}\mu_{02} - \mu_{11}^2)/\mu_{00}^4$

Digit recognition by the AMI's 123456 0.02 0.018 digit 1 digit 2 0.016 digit 3 \times ≯ 0 digit 4 + 0.014 digit 5 * digit 6 0.012 digit 7 \Diamond digit 8 ∇ 0.01 digit 9 \bigtriangleup * digit 0 ☆ 0.008 0.006 _∠ $\mathbf{\nabla}$ 0.004 + 0.002 0.025 0.03 0.035 0.04 0.05 0.045 0.055 0.06

Noisy digit recognition by the AMI's

a) Independent invariant set $I_1, I_2, I_3, I_4, I_6, I_7, I_8, I_9$

1	2	3	4	5	6	7	8	9	0	overall	
76	80	31	34	100	46	76	100	68	51	66.2	
b) Dependent invariant set $I_1, I_2, I_3, I_4, I_6, I_7, I_8, I_9, I_{10}$											
1	2	3	4	5	6	7	8	9	0	overall	
51	100	46	73	53	56	74	100	72	70	69.5	
c) Independent invariant set $I_1, I_2, I_3, I_4, I_6, I_7, I_8, I_9, I_{25}$											
1	2	3	4	5	6	7	8	9	0	overall	

74.5

Scrabble tiles recognition by the AMI's

Scrabble tiles recognition by the AMI's

Scrabble tiles recognition by the AMI's

Scrabble tiles recognition – the results

 Dependent set of 17 AMI's → 9 misclassifications (out of 168 cases)

• Independent set of 15 AMI's \rightarrow 5 misclassifications

Recognition of symmetric patterns

Recognition of children's mosaic

Robustness of the AMI's to distortions

Robustness of the AMI's to distortions

$\gamma[^{\circ}]$	$I_1[10^{-2}]I_2$	$_{2}[10^{-6}]I$	$[10^{-4}]I$	$_{4}[10^{-5}]I_{6}$	$[10^{-3}]I_7$	$[10^{-5}]I_8$	$[10^{-3}]I_9$	$[10^{-4}]$
0	2.802	1.538	-2.136	-1.261	4.903	6.498	4.526	1.826
30	2.679	1.292	-1.927	-1.109	4.466	5.619	4.130	1.589
45	2.689	1.328	-1.957	-1.129	4.494	5.684	4.158	1.605
60	2.701	1.398	-2.011	-1.162	4.528	5.769	4.193	1.626
75	2.816	1.155	-1.938	-1.292	5.033	6.484	4.597	1.868

The role of pseudoinvariants

- They change the sign under mirroring (i.e. if J < 0)
- This may or may not be desirable depending on the application
- They are zero on all objects having axial symmetry

The role of pseudoinvariants

Affine invariants from Cayley-Aronhold equation

Skewing parameter *t*

$$\frac{dI}{dt} = \sum_{p} \sum_{q} \frac{\partial I}{\partial \mu_{pq}} \frac{d\mu_{pq}}{dt} = 0$$

$$\sum_{p} \sum_{q} p \mu_{p-1,q+1} \frac{\partial I}{\partial \mu_{pq}} = 0$$

$$I = \left(\sum_{j=1}^{n_t} c_j \prod_{\ell=1}^r \mu_{p_{j\ell}, q_{j\ell}}\right) / \mu_{00}^{r+w}$$

Affine invariants from complex moments

$$I(c_{pq}) = (-2i)^w I(\mu_{pq})$$

Affine invariants via normalization

Many possibilities how to define normalization constraints

Several possible decompositions of affine transform

Decomposition of the affine transform

- Horizontal and vertical translation
- Scaling
- First rotation
- Stretching
- Second rotation
- Mirror reflection

Normalization to partial transforms

• Horizontal and vertical translation --

 $m_{01} = m_{10} = 0$

- Scaling -- $c_{00} = 1$
- First rotation $--c_{20}$ real and positive
- Stretching -- $c_{20} = 0$ ($\mu_{20} = \mu_{02}$)
- Second rotation -- c₂₁ real and positive

Moment values after the normalization

Translation, uniform scaling and the first rotation

$$\begin{split} \mu'_{pq} &= \sum_{k=0}^{p} \sum_{j=0}^{q} \binom{p}{k} \binom{q}{j} (-1)^{p+j} \sin^{p-k+j} \alpha \ \cos^{q+k-j} \alpha \ \nu_{k+j,p+q-k-j} \\ \alpha &= \frac{1}{2} \arctan\left(\frac{2\mu_{11}}{\mu_{20} - \mu_{02}}\right) \end{split}$$

Stretching

$$\mu_{pq}'' = \delta^{p-q} \sum_{k=0}^{p} \sum_{j=0}^{q} {p \choose k} {q \choose j} (-1)^{p+j} \sin^{p-k+j} \alpha \cos^{q+k-j} \alpha \nu_{k+j,p+q-k-j}$$

$$\delta = \sqrt[4]{\frac{\mu'_{02}}{\mu'_{20}}}$$

Moment values after the normalization

Second rotation

$$\tau_{pq} = \sum_{k=0}^{p} \sum_{j=0}^{q} \binom{p}{k} \binom{q}{j} (-1)^{p+j} \sin^{p-k+j} \varrho \, \cos^{q+k-j} \varrho \, \mu_{k+j,p+q-k-j}''$$

$$\varrho = \frac{1}{s-t} \arctan\left(\frac{\mathcal{I}m(c_{st}'')}{\mathcal{R}e(c_{st}'')}\right)$$
Possible volatility of the normalization

Affine invariants in 3D

3D affine transform

 $\mathbf{x'} = \mathbf{A}\mathbf{x} + \mathbf{b},$

$$\mathbf{x}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}, \mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \mathbf{b} = \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}$$

Analogy with the graph method

$$I(f) = \int_{-\infty}^{\infty} \prod_{j,k,\ell=1}^{r} C_{jk\ell}^{n_{jk\ell}} \cdot \prod_{i=1}^{r} f(x_i, y_i, z_i) dx_i dy_i dz_i,$$

$$I(f)' = J^w |J|^r I(f)$$

Affine invariants in 3D

An example

$$\begin{split} I_1^{3D} &= \frac{1}{6} \int_{-\infty}^{\infty} C_{123}^2 f(x_1, y_1, z_1) f(x_2, y_2, z_2) f(x_3, y_3, z_3) dx_1 dy_1 dz_1 dx_2 dy_2 dz_2 dx_3 dy_3 dz_3 / \mu_{000}^5 \\ &= (\mu_{200} \mu_{020} \mu_{002} + 2\mu_{110} \mu_{101} \mu_{011} - \mu_{200} \mu_{011}^2 - \mu_{020} \mu_{101}^2 - \mu_{002} \mu_{110}^2) / \mu_{000}^5. \end{split}$$

Corresponding hypergraph

Affine invariants in 3D

- $I_2^{3D} = \frac{1}{36} \int_{-\infty}^{\infty} C_{123} C_{124} C_{134} C_{234} f(x_1, y_1, z_1) f(x_2, y_2, z_2) f(x_3, y_3, z_3) f(x_4, y_4, z_4)$ $dx_1 dy_1 dz_1 dx_2 dy_2 dz_2 dx_3 dy_3 dz_3 dx_4 dy_4 dz_4 / \mu_{000}^8 =$
 - $= (\mu_{300}\mu_{003}\mu_{120}\mu_{021} + \mu_{300}\mu_{030}\mu_{102}\mu_{012} + \mu_{030}\mu_{003}\mu_{210}\mu_{201} \mu_{300}\mu_{120}\mu_{012}^{2} \mu_{030}\mu_{210}\mu_{102}^{2} \mu_{030}\mu_{210}\mu_{102}^{2} \mu_{030}\mu_{201}\mu_{102}^{2} \mu_{003}\mu_{210}^{2}\mu_{021} \mu_{003}\mu_{201}\mu_{120}^{2} \mu_{1300}\mu_{030}\mu_{003}\mu_{111} + \mu_{300}\mu_{021}\mu_{012}\mu_{111} + \mu_{030}\mu_{201}\mu_{102}\mu_{111} + \mu_{003}\mu_{210}\mu_{120}\mu_{111} + \mu_{210}^{2}\mu_{012}^{2} + \mu_{201}^{2}\mu_{021}^{2} + \mu_{120}^{2}\mu_{102}^{2} \mu_{210}\mu_{102}\mu_{012} \mu_{210}\mu_{201}\mu_{021}\mu_{012} \mu_{201}\mu_{102}\mu_{021} 2\mu_{210}\mu_{012}\mu_{111}^{2} 2\mu_{201}\mu_{021}\mu_{111}^{2} 2\mu_{120}\mu_{102}\mu_{111}^{2} + 3\mu_{210}\mu_{102}\mu_{011} + 3\mu_{201}\mu_{120}\mu_{012}\mu_{111} + \mu_{111}^{4})/\mu_{000}^{8}.$

Corresponding hypergraph

Documented applications of the AMI's

- Character/digit/symbol recognition in the case of skewing/slant
- Landmark recognition in robotics
- Recognition of aircraft and ships from nonperpendicular views
- Recognition of algae, fishes, whales, etc
- Image registration
- Target tracking
- Normalization of database images

Invariants to elastic deformations

How can we recognize objects on curved surfaces ...

Moment matching

Find the best possible fit by minimizing the error and set

$I(f, f') = \min_{a} \|\mathbf{m}' - A \cdot \mathbf{m}\|$