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Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2022



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Firstly, I would like to thank my supervisor Ing. Adam Novozámský, Ph.D.,
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Chapter 1

Introduction

1.1 Motivation
Due to the exponential growth of digital image capturing devices and extensive
image collections, the amount of digitally produced images rapidly increases over
time. Moreover, the increase in network speed has made it possible to store
a large amount of images. Based on the difficulties users may encounter while
organising and searching large databases, the need for efficient image retrieval
emerged.

In order to respond to this need, researchers have tried various approaches
in text retrieval. There are some efficient search and retrieval engines based on
textual descriptions of the images. Such tasks require humans to annotate each
image in the database by text manually. This approach is not scalable, and it
has become deficient and tedious.

Furthermore, due to the subjectivity of the human annotation process, the
textual description may not be consistent or complete, which can deteriorate
the retrieval performance. However, researchers have come up with an idea to
index images based on their visual content. In the last few years, researchers
have developed many image features using information about colour, texture,
and shape.

The importance of content-based image retrieval is motivated by the increas-
ing desire to retrieve images from growing image databases. It became popu-
lar in many domains such as medical imaging, weather forecasting and crime
prevention. It originates from many different fields such as statistics, pattern
recognition, computer vision and more.

1.2 Outline
This thesis aims to investigate the techniques used in content-based image re-
trieval, from the earliest simple methods to state-of-the-art methods. At first,
we research the methods of generating simple image descriptors based on colour,
texture and shape. Afterwards, we explain the principle of neural networks and
the known widely-used architectures. We implement several methods from both
spheres of interest. We evaluate our experiments and compare the methods’ be-
haviour and performance on different kinds of images. The main goal of this thesis
is to develop an image retrieval system for Vienna City Library. In addition, we
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implement a web application that serves as an efficient tool for image retrieval
on a particular image dataset of posters provided by Vienna City Library.

Chapter 2 introduces a task of content-based image retrieval. We explain
the principle of a general content-based image retrieval system. We formulate a
task mathematically and state definitions of metric space and distance measures.
After all, we define evaluation metrics frequently utilised in retrieval systems.

We focus on research of primitive feature extraction techniques in Chapter
3. We name these approaches handcrafted features and divide them into three
categories: colour, texture and shape. For each category, we define three ap-
proaches providing image features. These methods are not deployed in modern
retrieval systems. However, the ideas behind them are beautiful and helpful to
understanding more sophisticated approaches. Some of the techniques are based
on image convolution, which forms a basis of convolutional neural networks (see
Chapter 4).

Next, we explain deep neural networks in general and convolutional neural
networks in Chapter 4 extensively used in applications of computer vision. Due
to its tremendous success in computer vision applications during the last decade
(mainly since the work of Krizhevsky et al. [2012]), these models replaced tra-
ditional approaches. A deep understanding of neural networks requires a strong
mathematical background in mathematical analysis, linear algebra, numerical
methods in optimisation and probability. However, we strive to clarify the funda-
mental knowledge to a common reader. We describe how to use these networks for
image retrieval tasks and summarise existing pre-trained networks’ architectures.

Dimensionality reduction techniques described in Chapter 5 are utilised in
many applications. Principal component analysis represents one of the oldest
such techniques. It employs linear projection on the lower-dimensional space pre-
serving the maximum amount of information. Another described method called
t-SNE is proper when visualising high-dimensional vectors in low-dimensional
space. It employs advanced mathematics and tries to preserve the local and
global structure of the data. It enables humans to understand the arrangement
of the data in high-dimensional space. We utilised t-SNE in Chapter 6 to show
retrieval results on a two-dimensional plot.

In Chapter 6, we summarise the results of our implementation and com-
pare methods with various parameters on introduced datasets. We implemented
both handcrafted features and models based on neural networks. Afterwards,
we present a technique for improving retrieval effectiveness, widely known as
fine-tuning neural networks. Moreover, we show t-SNE plots of high-level image
descriptors.

We provide an overview of our web application implementation in Chapter 7.
It is designed to perform image retrieval on an image chosen by a user and re-
trieves images from an image dataset collected from posters from the Vienna City
Library. We explain its principle and briefly summarise the used technologies.

In the end, we summarise this thesis in Chapter 8. Moreover, we provide a
list of suggestions for future work. Lastly, we refer to the work of state-of-the-art
researchers using the most advanced existing approaches in content-based image
retrieval.
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Chapter 2

Content-Based Image Retrieval

This chapter focuses on the fundamental knowledge necessary to understand
content-based image retrieval. We explain the principle of a typical content-based
image retrieval pipeline and introduce a task with mathematical definitions of im-
portant notions included. In the end, we familiarize with distance measures and
metrics used for evaluation.

2.1 Standard CBIR pipeline
Content-based image retrieval (CBIR) represents a technique to extract image
features based on visual content. In other words, each image is indexed based on
its visual properties, like colour, texture and shape. The main goal of CBIR is to
find the most similar images to an image defined by a user from a given database.
Therefore, the images need to be characterized efficiently to keep similar images
close in terms of distance.

Figure 2.1: Typical CBIR pipeline. It consists of offline on right and online
processing part on left and centre.

A standard CBIR system usually follows the pipeline shown in Figure 2.1.
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Input is the query image defined by a user, and output is the most similar to a
given query image. The architecture consists of the online and offline processing
stages. In the offline stage, database features are pre-computed to get image
descriptors of each image stored in the feature database. The online stage is
composed of two parts. At first, the image features are extracted. Afterwards,
similarity matching is performed on the query image descriptor and each database
image descriptor.

A user typically inserts an image after the database image descriptors are pre-
computed. The goal of the CBIR system is to retrieve the desired images similar
to this query from the provided image database. All database images are ranked
according to the similarity to the query image given by a chosen algorithm. The
pipeline output is the first N images for the N defined by the user.

2.2 Task formulation
In order to describe the problem clearly, we need to state the elementary defini-
tions.

Colour digital images are represented as 3-dimensional matrices with a given
height, width and the number of colour channels. Image representation depends
on the choice of the colour space, which is a specific organization of colours. In
other words, it is a model used to represent as many colours as the human vision
system can perceive. Many colour spaces have been developed (Ibraheem et al.
[2012]). In this thesis, we represent images in trichromatic colour spaces such as
RGB or HSV.

Since there is a finite number of intensity values for each colour channel c, a
set of all possible images with a given height h and width w is finite. This set
determined by a height h, a width w and a number of colour channels c is given
by:

Uh,w,c = {0, 1, . . . , 255}h×w×c

A digital image of a height h and a width w with three colour channels can be
understood as an element of Uh,w,3, abbreviated as U . We define it as a three-
dimensional matrix.

Definition 1 (Digital image). Digital image I of height h and width w under
a given colour space with c colour channels is three-dimensional matrix of size
h× w × c with elements from set {0, 1, . . . , 255}.

The digital image usually has three colour channels. However, it may be in a
grayscale image, which means that it has only one colour channel. Suppose we
are given query image Q and a set of database images D. As mentioned in the
previous section, each database image corresponds to an image descriptor based
on its content after feature extraction. The query descriptor is compared to each
database image descriptor to measure the similarity between the query image and
each database image. Images evaluated with the lowest distances are retrieved.
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2.3 Feature space
The image features need to be captured effectively to describe the significant
image properties. Good features have discriminating properties, meaning that
they can distinguish one image from other dissimilar images. It also needs to
be as robust as possible to prevent generating many different features for similar
images with a similar object. A feature space F refers to the collections of features
characterizing the image data.

Definition 2 (Feature space). Feature space F is a vector space isomorphic to
Rn for n ∈ N.

In the context of this work, by feature extraction, we mean extracting in-
formation based on the visual content. Feature extraction is a mapping that
usually reduces the number of parameters. The main goal of feature extraction
is to obtain the most relevant descriptors of the original data to represent that
information in a lower dimensionality space. Efficient feature extraction is a re-
search problem, and we describe some of the possible approaches in the following
chapters.

In the following two sections, the definitions originate mainly from the mas-
ter thesis of Bátoryová [2020]. We will define a notion of descriptor extraction
function, a mapping from the image space U to the feature space F .

Definition 3 (Descriptor extraction function). Let U be the set of all possible
images and F the feature space. A function fext : U −→ F is the descriptor
extraction function. We say that vector fext(I) is an image descriptor of image I
with given descriptor extraction function fext.

An image descriptor is extracted from each database image and is used to
create an indexed database. The descriptor extraction function describes the
properties of colour, texture or shape of an image and what is more interesting,
we can obtain it by a neural network. We use various strategies to extract these
image properties and diversely construct neural networks.

2.4 Distance and metric space
After feature extraction of the query image and the image database, database
features are compared to the query feature to measure the dissimilarity between
images. To do so, we need to define the distance space and the metric space
properly. Comparing images means comparing their descriptors using distance
measure d.

Definition 4 (Distance space). A distance space is an ordered pair (P , d) where
P is a set and d is a distance on P, i.e., function d : P × P → R+

0 such that for
any x, y ∈ P, the following holds:

1. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

2. d(x, y) = d(y, x) (symmetry)
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Definition 5 (Metric space). A metric space is an ordered pair (P , d) where P
is a set and d is a metric on P, i.e., function d : P × P → R+

0 such that for any
x, y, z ∈ P, the following holds:

1. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality)

In comparison to the distance space, metric space satisfies the triangle in-
equality. From the above three axioms of metric space, a condition d(x, y) ≥ 0
for any x, y ∈ P is satisfied. The typical example of a metric space is the defined
feature space considered to be isomorphic to Rn. Measuring the similarity has
the opposite effect of measuring the distance. Therefore, the most similar vectors
are considered the closest ones in terms of distance.

2.5 Distance measures
In order to perform similarity matching, we define numerous metrics. There are
two kinds of them: distances and similarities, depending on whether we consider
smaller or larger values as similar. At first, we define an Lp norm, denoted by ∥·∥p.
A special case is commonly used L2 norm and its notation can be abbreviated as
∥v∥ instead of ∥v∥2.

Definition 6 (Lp norm). For a given v ∈ Rn we define the Lp norm of v as:

∥v∥p = p

⌜⃓⃓⎷ n∑︂
i=1

vp
i .

Distance measures widely used in image retrieval are the following ones.

Definition 7 (Manhattan distance). For given u, v ∈ Rn we define the Manhat-
tan distance as:

dman(u, v) = ∥u− v∥1 =
n∑︂

i=1
|ui − vi|.

Definition 8 (Euclidean distance). For given u, v ∈ Rn we define the Euclidean
distance as:

deuc(u, v) = ∥u− v∥2 =
⌜⃓⃓⎷ n∑︂

i=1
(ui − vi)2.

Definition 9 (Cosine similarity). For given u, v ∈ Rn we define the cosine simi-
larity as:

scos(u, v) = u · v
∥u∥2∥v∥2

=
∑︁n

i=1 uivi√︂∑︁n
i=1 u

2
i

√︂∑︁n
i=1 v

2
i

.

We define the cosine distance using a transform d = 1 − s.

dcos(u, v) = 1 − scos(u, v)
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2.6 Evaluation metrics
In this section, we mean images similar to a given query by relevant images.
In order to evaluate the retrieval performance, a set of query images is defined
beforehand. We denote this set as a test set of queries.

The performance of the retrieval system can be evaluated in terms of of-
fline metrics such as precision and recall. Precision is the ratio of the number
of retrieved relevant images and the number of all of the retrieved images. In
contrast, recall represents the ratio of the number of retrieved relevant images
and the number of relevant images. Alternatively, the F1 score is utilized, which
combines precision and recall by computing a harmonic mean of them. However,
for modern information retrieval, recall is no longer a meaningful metric since
queries have thousands of relevant documents, and few users will be interested in
reading all of them.

The precision at K represents a percentage of relevant images in the top K
images. Since the precision at K depends on an application, it needs to be av-
eraged on different values of K. In terms of average precision, these values of K
are the positions where another relevant image appears. Let N be the number of
retrieved images and R the number of relevant images that are retrieved. Then
precision is defined as a fraction R

N
. Equivalently, suppose we denote True Posi-

tives as TP, False Positives as FP, False Negatives as FN and True Negatives as
TN. In that case, precision is computed as a ratio T P

T P +F P
. Accuracy is calculated

as a ratio T P +T N
T P +T N+F P +F N

. Precision at K is (P@K) is computed as a percentage
of relevant images in the top K images.

Definition 10 (Precision at K). Let RK(I) be the number of relevant images in
top K images for an image I. Precision at K (P@K) is defined as:

P@K(I) = RK(I)
K

.

The precision at K for a set of test queries is averaged precision at K over all test
queries.

For systems that return a ranked sequence of images, it is desirable also to
consider the order in which the returned documents are presented. Average pre-
cision (AP) summarizes precisions at K for different values of K at the positions
of the relevant images.

Definition 11 (Average precision). Let R be the number of relevant images for
an image I. Let P@k be an precision at k for k = K1, . . . , KR, where Ki is an
i− th relevant position. Average precision for an image I is defined as:

AP (I) = 1
R

R∑︂
i=1

P@Ki(I).

When it comes to measuring the performance of the whole retrieval system,
the average precision is averaged through all the test queries Q. This leads us to a
notion of the mean average precision (mAP), a widely used metric in information
retrieval tasks.

9



Definition 12 (Mean average precision). Let Q be the number of test queries
and AP (Ii) be the average precision for query image Ii for each i = 1, . . . , Q.

Mean average precision is defined as:

mAP = 1
Q

Q∑︂
i=1

AP (Ii).
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Chapter 3

Handcrafted features

This chapter introduces several image descriptors, widely used before the advent
of the state-of-the-art techniques based on neural networks described in Chapter
4. Handcrafted features are image descriptors based on colour, texture, or shape
properties. Its usage depends on a particular problem and dataset. In some
applications, we want to retrieve images with similar colour properties. The
spatial arrangement of pixel intensity values plays a vital role in texture analysis
and retrieval. It is useful when dealing with greyscale images, where colour
information is unavailable.

3.1 Related work
In the last few decades, many researchers have tried to find algorithms to extract
features that describe an image efficiently (Stockman and Shapiro [2001]). Hand-
crafted methods consider colour, texture and shape information. Typical image
descriptors depend on more of these categories. In this chapter, we summarise
different approaches, and we discuss the implemented results in Chapter 6.

Colour features pose low-level visual features invariant to image size and ori-
entation. It depends on a chosen colour space. Colour histograms represent the
most essential colour features appeared in content-based image retrieval (Kumar
and Saravanan [2013]). These can be global or local (Pant [2013]) depending
on the size of the region of an image considered. It is commonly computed on
the reduced set of image colours. This process is known as quantisation. Colour
moments, simple statistical features such as mean, standard deviation, and skew-
ness provide a measure of the degree of asymmetry in the distribution (Singh and
Hemachandran [2012]). Colour coherence vector developed by Pass et al. [1997]
generalises colour histogram by taking into account the coherency of each coloured
pixel. It used in CBIR Al-Hamami and Al-Rashdan [2010]. Other methods in-
clude colour correlogram (Huang et al. [1997]), and colour co-occurrence matrix
looking at co-occurrences of colours (Lin et al. [2009]). Dominant colour descrip-
tor is determined by a prescribed number of dominant colours of an image and its
corresponding percentage (yang Wang et al. [2011], Rashno and Rashno [2019]).
Spatial chromatic histogram based on the work of Cinque et al. [2001] represents
a generalisation of histogram specifying a relevant average position and a variance
of each colour. The feature was employed in the context of content-based image
retrieval (Gavrielides et al. [2006]).
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Methods based on image texture are usually applied to an image with one
channel. The image is converted to greyscale or uses only one component from
colour channels. Texture analysis came up with one of the earliest methods based
on grey-level co-occurrence matrix (GLCM) based on Haralick et al. [1973]. Its
properties are known as Haralick features forming a feature vector. Next inter-
esting texture features employed image filters, such as Gabor filters (Singh et al.
[2018], Zhang et al. [2000]) or Discrete Wavelet Transformation (DWT) (Agar-
wal et al. [2013], Rashno and Rashno [2019]). Ojala et al. [2000] developed an
approach called Local Binary Patterns (LBPs) describing the local pixel’s neigh-
bourhood. A simple generalisation of LBP is Local Tetra Pattern considering
the character of the circular pixel neighbourhood concerning the centre pixel
(Murala et al. [2012]). Other techniques look for the ordering of pixel values in
pixel’s neighborhood are known as Scan Pattern Co-occurrence Matrix (SPCM)
(Rao et al. [2011]) or Scan Pattern Internal Pixel Difference (SPIPD) (Rao et al.
[2011]).

Regarding shape methods, histograms of oriented gradients (HOG) Dalal and
Triggs [2005] were developed to detect the pedestrians based on the orientation
and magnitude of the image gradient. Discrete image derivatives provide mean-
ingful image features. Local features such as SIFT and SURF were also used in
CBIR Alkhawlani et al. [2015].

3.2 Convolution
The convolution of an image represents a significant milestone. It is computed
using a kernel, a matrix of typically smaller size than the image size. An image
is typically padded by zeros outside its border. In the following definitions, the
sum is computed over the size of a kernel, and the output is of the same size as
an original image.

Definition 13 (2D Discrete Convolution). Given an image I of size h×w, padded
with zeros, one colour channel, and a kernel K. Convolution of an image I with
a kernel K is a matrix of type h× w defined as

(K ∗ I)i,j =
∑︂
m

∑︂
n

Ii−m,j−nKm,n

Definition 14 (2D Discrete Cross-Correlation). Given an image I of size h×w,
padded with zeros, one colour channel, and a kernel K. Cross-correlation of an
image I with a kernel K is a matrix of type h× w defined as

(K ⋆ I)i,j =
∑︂
m

∑︂
n

Ii+m,j+nKm,n

Cross-correlation is a convolution without flipping the kernel, and this oper-
ation is applied to images. We follow the convention of calling both operations
convolution and cross-correlation as convolution (see Goodfellow et al. [2016]).
The first argument K is referred to as a kernel, the second argument I as an in-
put image and the output (K ⋆ I) is called a feature map. When considering the
convolution of an image with more colour channels, the convolution is applied to
each colour channel separately, and we may define different kernels for different
colour channels.
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3.3 Colour methods
Colour perception depends upon both the physics of the light and complex pro-
cessing by the eye-brain, which integrates properties of the stimulus with experi-
ence. Colour features are computationally the most simple and play an important
role in image analysis, image retrieval and related fields.

The encoding of an arbitrary colour in the visible spectrum is made by com-
bining and encoding three primary colours, red, green and blue (RGB) or other
colour space such as HSV or L*a*b* compared in Figure 3.1.

Figure 3.1: Colour systems: RGB, HSV and L*a*b* (Commons)

The RGB colour system is an additive colour system in which the red, green,
and blue primary light colours are added together. HSV colour system is more
adapted to human perception of colour. It has been reported that the HSV
colour space gives the better colour histogram feature among the different exam-
ined colour spaces (Singha and Hemachandran [2012]). HSV is based on cylinder
coordinates. Hue represents the dominant wavelength in the light; saturation rep-
resents the dominance of hue in colour, and value is defined as a relative lightness
or darkness of a colour. Derivation of the transformation from RGB coordinates
to HSV coordinates is based on the algorithm from the work of Stockman and
Shapiro [2001]. Another colour space denoted by L*a*b* was intended as a per-
ceptually uniform space, where a given numerical change corresponds to a similar
perceived change in colour. However, it has a different range than RGB and HSV.

In a common image representation where each channel has 256 intensity levels,
every pixel can have 2563, over 16 million colours. Humans cannot distinguish
between this large amount of various colours; they can see only a million colours.
So it is not necessary to distinguish between every single colour. Moreover, con-
sidering fewer colours is sufficient and computationally more efficient. Thus we
employ image quantisation to reduce the number of colours of the colour feature
components. The general goal of quantisation is to reduce colour space without
significantly affecting the visual properties of an image. It is applied to pro-
vide a trade-off between the accuracy of the image representation and memory
requirements.

Quantisation is a reduction of the number of colours of an image. There are
several commonly used quantisation techniques: predefined palettes (Macbeth
or Fibonacci palette), uniform quantisation, median cut quantisation algorithm,
quantisation computed by clustering, or octree quantisation. For the purpose of
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image retrieval, it makes sense to keep the same palette to compare corresponding
colour features.

3.3.1 Colour histogram
Consider that we are given a colour space and quantised image. A colour his-
togram provides the occurrence of colour in an image I. It can be computed
globally or locally in fixed regions or regions obtained by image segmentation.
Their popularity stems from being computationally trivial and almost translation-
invariant, meaning that small changes in camera viewpoint do not affect the
computed feature. They are partially invariant to the rotation about the imaging
axis, small off-axis rotations, scale changes, and partial occlusions (Stockman and
Shapiro [2001]). It depends only on the colour properties of an image without
providing any information on the spatial distribution of colours, so it merely de-
scribes which colours are present in the image. This chapter considers a digital
image as a function from its domain to a set of colours.

Remark (Digital image as a function). A digital image with three colour channels
can be understood as a function as I : {1, . . . , h} × {1, . . . , w} → {0, . . . , 255}3.

Definition 15 (Global colour histogram). Given an image I of size h × w with
C possible image colours. Let kc be an index of a colour c, so that kc = 1, . . . , C.
The global image histogram HI of an image I is a C-dimensional vector defined
as

(HI)kc = |{I(i, j) = c | i ∈ {1, . . . , w}, j ∈ {1, . . . , h}}|

A global normalised colour histogram forms a probability distribution of image
colours. It can be visualised as a bar graph, in which each bar represents a par-
ticular colour density. Many different distances have been proposed to measure
the similarity between two image histograms, such as intersection distance pro-
posed by Swain and Ballard [1990], Euclidean distance, and histogram quadratic
distance (van den Broek [2005]) incorporating the similarity matrix.

A local colour histogram divides an image into fixed blocks and calculates the
colour histogram of each of those blocks. By concatenating local colour histogram,
we obtain another colour feature. Its special case is a feature vector represented
by the average colour in each block.

Definition 16 (Grid average colour). Given an image I of size h × w. Let
k′, l′ ∈ N and k = ⌊ h

k′ ⌋ and l = ⌊w
l′

⌋. Grid average colour of an image I is defined
as

(GI)m,n = 1
kl

k∑︂
i=1

l∑︂
j=1

I(i+m · k, j + n · l),

where m = 0, . . . , k − 1 and n = 0, . . . , l − 1.

A grid colour feature is a vectorisation of grid average colour. Since we assume
that the number of grid blocks is significantly smaller than the size of an image,
we can omit boundary pixels from the definition.
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3.3.2 Colour coherence vector
Since global colour histograms lack spatial information, a more complex histogram-
based approach was developed by Pass et al. [1997] named colour coherence vector
(CCV). It is a refined colour histogram method providing additional information
about colour coherence. A colour coherent pixel belongs to a large similarity
coloured region, whereas an incoherent does not. Let us introduce a notion of a
connected component of an image.

Definition 17 (Connected component). A connected component C is a maximal
set of pixels such that for any two pixels p, p′ ∈ C, there is a path in C between
p and p′. Path is a sequence of pixels of the same colour p = p1, p2, . . . , pn = p′,
such that each pixel pi is in C and any two sequential pixels pi, pi+1 are adjacent
to each other (meaning that if one pixels is among the eight closest neighbours of
the other).

Connected components of an image I can be computed in linear time with
respect to the number of all image pixels. For each pixel, we remember the number
of pixels in a connected component, and we call it the size of the connected
component denoted by SC .

Definition 18 (Coherent pixel). A pixel is coherent with respect to a given thresh-
old τ if the size SC of its connected component C satisfies SC ≥ τ . Otherwise,
we say the pixel is incoherent.

The Colour coherence vector generalises global colour histogram by computing
colour histogram for one thing of coherent pixels and another of incoherent pixels.
Although the following two definitions depend on τ , we consider τ as a predefined
constant.

Definition 19 (Colour coherence vector). Given a digital image I with V image
colours. Let αi be the number of coherent pixels of the i-th colour and βi be the
number of incoherent pixels of the i-th colour. The colour coherence vector CI of
an image I is a 2V -dimensional vector defined by

CI = (α1, β1, . . . , αV , βV )

Definition 20 (Colour coherence vector distance). Let us assume that each im-
age has the same number of pixels. Given an image I and I ′ together with
their corresponding colour coherence vectors CI = (α1, β1, . . . , αV , βV ), CI′ =
(α′

1, β
′
1, . . . , α

′
V , β

′
V ) we define a colour coherence vector distance as:

dCCV (CI , CI′) =
V∑︂

i=1
|αi − α′

i| + |βi − β′
i| = ∥CI − CI′∥1

The effectiveness of the Colour Coherence Vector was improved by Al-Hamami
and Al-Rashdan [2010]. The original CCV method does not tell about the exis-
tence of dissimilarity between images. Therefore, it exploits the location informa-
tion, such as the number of coherence regions of the same colour for each colour.
Next possible improvements in colour coherence vector were investigated in the
work of Al-Hamami and Al-Rashdan [2010], Singh et al. [2018].
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3.3.3 Spatial chromatic histogram
Some histograms are based only on counting quantised colours; others incorporate
spatial colour distribution information. Spatial chromatic descriptor generalised
the traditional global colour histogram by taking into account another property
of colours present in an image. An original idea of a spatial chromatic histogram
was proposed by Cinque et al. [2001] and employs not only the occurrences but
also the relative average position of every single colour and the standard deviation
of each colour.

Definition 21 (Spatial chromatic descriptor). Let I be an image of size h × w
and hI be its normalised colour histogram. Let aI(c) be the absolute number of
the pixels in an image I having c-th colour, c = 1, . . . , C.

We define a barycenter of i-th colour (bI)i = (xī, yī), where

xī = 1
w

1
aI(i)

∑︂
I(x,y)=i

x

yī = 1
h

1
aI(i)

∑︂
I(x,y)=i

y

The standard deviation is defined as:

(σI)i =
⌜⃓⃓⎷ 1
aI(i)

∑︂
I(p)=i

d(p, (bI)i)2,

where p denotes pixel in relative coordinates (in range [0, 1]), the the sum is
over all pixels p having a colour i, d(p, (bI)i) is Euclidean distance between a pair
of pixels p. It gives a measure of how the pixel spreads around the barycenter.
The spatial chromatic histogram is defined as:

SI = (hI , bI , σI).

Note that the spatial chromatic histogram is a 3C-dimensional vector. Dis-
tance measure was designed by Cinque et al. [2001] as in the following definition.

Definition 22 (Spatial chromatic distance). Given two images I1, I2. The spatial
chromatic distance between images I1 and I2 is defined as:

dsch(I1, I2) =
C∑︂

i=1
min((hI1)i, (hI2)i) ·

(︄√
2 − d((b1)i, (b2)i)√

2
+ min((σ1)i, (σ2)i)

max((σ1)i, (σ2)i)

)︄

Let us assume that each colour exists on one of the images at least in two
pixels to avoid the expression of 0/0. The spatial colour descriptor was utilised
for the purpose of content-based image retrieval in the work of Gavrielides et al.
[2006]. Note that spatial chromatic histogram requires slightly different definition
of digital image since it is defined on the CIELAB colour space, also referred to
as L*a*b*.
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3.4 Texture methods
Texture features give information about the spatial arrangement of the colours or
intensities in an image (Stockman and Shapiro [2001]). It can be found in natural
scenes and also artificial objects.

The widely known texture features are Haralick features describing a global
representation of a texture computed from Grey-Level Co-occurrence Matrix
based on the work of Haralick et al. [1973], and Local Binary Patterns invented
by Ojala et al. [2000] based on local changes in intensity values. Extracted fea-
tures describe the regularity, coarseness or geometric properties of an image. In
order to build texture features, the image is usually converted into greyscale,
but it may be applied to all colour components. For instance, some approaches
extracted texture features from the value component of the HSV image.

3.4.1 Grey-Level Co-occurrence Matrix
Haralick et al. [1973] introduces Gray-Level Co-Occurrence matrix (originally
defined as Grey-Tone Spatial Dependence Matrix) that became one of the earliest
techniques used in texture analysis. It has been widely used in many applications
in texture classification, and it poses a well-known textural feature used in image
retrieval. Haralick’s idea was to introduce a matrix to measure the occurrence of
adjacent pixel values with a given direction forming a given angle and use it to
extract a set of textural features. Haralick defined a set of 14 features. It was used
to solve an image classification task performed on photomicrographs of sandstones
(automated classification of rocks into six categories), aerial photographic and
satellite imagery.

d
i j

d

i

j

Figure 3.2: Four displacement vectors proposed by Haralick. The original GLCM
was defined as a symmetric and it did not depend on the ordering of a co-
occurrence.

A co-occurrence matrix is stored as a two-dimensional array C. The value
of C(i, j) indicates how many times value i co-occurs with value j in some de-
signed spatial relationship. This relationship is given by a vector d specifying the
displacement between these two pixels with values i and j.

Definition 23 (Grey-level co-occurrence matrix). Given a grey-scale image I
with V grey levels. Let d = (dr, dc) be a displacement vector where dr is a dis-
placement in rows (downward) and dc is a displacement in columns (to the right).
The grey-level co-occurrence matrix CI,d for image I is a matrix of type V × V ,
in which each position (v1, v2) is defined by

(CI,d)v1,v2 = |{(i, j) | I(i, j) = v1 ∧ I(i+ dr, j + dc) = v2}|,

17



if I(i, j) and I(i + dr, j + dc) is defined. Grey-level co-occurrence matrix is
commonly abbreviated as GLCM.

Definition 24 (Normalized GLCM). The normalized GLCM NI,d of type V ×V
of a given image I and displacement vector d is defined by

(NI,d)i,j = (CI,d)i,j∑︁
i

∑︁
j(CI,d)i,j

,

where i, j = 1, . . . , V .

It can be thought of as a generalised histogram where each position represents
not an occurrence density but a co-occurrence density. The normalised grey-level
co-occurrence matrix values represent probabilities of pixel value co-occurrences.

Given the GLCM, its statistics are computed: contrast, dissimilarity, ho-
mogeneity, angular second moment, energy, correlation and entropy. Haralick
presented a set of 14 features; we define just 5 of them, which we implemented in
our experiments in Chapter 6. For more features, we refer to the original paper
of Haralick et al. [1973].

Definition 25 (Haralick’s features). Let NI,d be the normalized GLCM for an
image I with V grey levels, NI,d = (ai,j)V,V

i,j=1. Then the features of GLCM NI,d

are defined as:
Angular second moment:

fasm =
V∑︂

i=1

V∑︂
j=1

a2
i,j

Contrast:
fcon =

V∑︂
i=1

V∑︂
j=1

ai,j(i− j)2

Dissimilarity:

fdis =
V∑︂

i=1

V∑︂
j=1

ai,j|i− j|

Homogeneity:

fhom =
V∑︂

i=1

V∑︂
j=1

ai,j
1

1 + (i− j)2

Correlation:
fcor =

∑︁V
i=1

∑︁V
j=1 ijai,j − µxµy

σxσy

,

where µx = ∑︁
i,j iai,j, µy = ∑︁

i,j jai,j, σx = ∑︁
i,j(i − µx)2ai,j and σy = ∑︁

i,j(j −
µy)2ai,j.

Haralick features were generalised (Vadakkenveettil [2012]) to the trace fea-
ture, which outperforms Haralick features in the context of the content-based
image retrieval. The purpose of the trace feature is to identify constant regions
in an image. The sum of its diagonal elements defines the trace of a GLCM.
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3.4.2 Local binary patterns
Local binary patterns (LBPs) are computationally simple features used to de-
scribe a local representation of texture applied to a two-dimensional image. The
original idea comes from the work of Ojala et al. [2000] and later generalized by
Ojala et al. [2002]. They characterise the spatial configuration of local image
texture by using the information in a small neighbourhood. Their advantage
is invariance against monotonic transformations and robustness in the greyscale.
The rotational invariance can be achieved by slightly modifying the most straight-
forward presented approach. It can be improved by choosing a limited subset of
”uniform” patterns instead of all rotation invariant patterns.

Example Thresholded

Weights

4 7

7 6 9

4 3

6

8

0 1

1 1

0 0

1

1

64 32

128 8

2 4

16

1

185

Figure 3.3: Local Binary Pattern computation. Example: binary number
10111001 to decimal number as 1 + 8 + 16 + 32 + 128 = 185.

Their disadvantage is ignoring the global spatial information of the image
texture. Moreover, LBPs discard the contrast property and assume the inde-
pendence of the central pixel value and its differences with neighbouring pixels,
which is not warranted in practice. The local binary pattern values are stored in
the two-dimensional array with the same width and height as an original image.

To explain the main idea, let us consider a 3 × 3 pixel neighbourhood and
threshold each pixel against its given neighbourhood as shown in Figure 3.3.
Thresholded neighbouring pixel values are concatenated to form a binary string.
For each pixel, there are eight neighbouring pixels; thus, there are 28 = 256
possibilities of a binary string. This binary string is converted to decimal to get
a number between 0 and 255 for each pixel.

The LBPs were generalised to the regular circular neighbourhood of radius
of any size and any number of points. Furthermore, a discrete image domain is
expanded to a continuous image domain and the discrete set of grey values to
the continuous interval [0, 255] and bi-linear interpolation on pixel values (Ojala
et al. [2002]).
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Spot Spot/Flat Line end Edge Corner

Figure 3.4: Local binary patterns: types of neighbourhood.

Definition 26 (Local binary pattern). Given an image I with continuous domain
and range of grey-levels obtained by bi-linear interpolation. Let (i, j) be an image
position, where I(i, j) = gc, a neighbourhood size R, the number of examined
points P and an angle α = 2π/P . Let gp, p = 0, . . . , P − 1 be computed by

gp = I(i+R cos(pα), j +R sin(pα))

The local binary pattern for an image I in a position (i, j) is defined as

LBPP,R =
P −1∑︂
p=0

s(gp − gc)2p

where s(x) is the sign function given by

s(x) =
⎧⎨⎩1, x ≥ 0

0, x < 0

The local binary pattern is computed for each position (i, j) of the image I.

P = 8, R = 1 P = 16, R = 2 P = 8, R = 2

Figure 3.5: LBPs: Examples of a given number of points P and radius R.

In the context of image processing, monotonic transformation applied to an
image can be a change of a contract or brightness of an image.

Theorem 1. The LBPP,R is invariant against monotonic transformation.

Proof. The sign function s of the difference of two neighbouring pixel values
in definition of LBP threshold each pixel against its neighbours in a pre-defined
neighbourhood. Assume that gp ≥ gc and let us consider a monotonic transforma-
tion f applied on gp and gc. Then from the definition of monotonic transformation
it holds f(gp) ≥ f(gc), thus the value of s(gp − gc) remains the same. Similarly,
when gp ≤ gc, then f(gp) ≤ f(gc). This holds for each p = 0, . . . , P − 1, therefore
the value of LBPP,R remains the same.
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Rotational invariant local binary patterns are achieved via assigning a unique
identifier to each rotation local binary pattern. Note that an exact rotation
invariance is considered only rotations by an angle 2iπ/P , i ∈ N.

Theorem 2 (Rotation invariant of local binary pattern). Given a local binary
pattern of an image I. We define an operator LBP ri

P,R as

LBP ri
P,R = min{ROR(LBPP,R, i)|i = 0, . . . , P − 1}

where ROR(x, i) performs a circular bit-wise right shift on the P -bit number x i
times. Then LBP ri

P,R is a rotation invariant considering rotations by angle 2iπ/P ,
i ∈ N.

Proof. The LBP ri
P,R is achieved by circularly rotating each bit LBPP,R until the

minimum value is attained. The rotation by an angle 2iπ/P produces local binary
pattern values, which are shifted in a binary representation. The circular shift of
binary numbers forms equivalence, in which each class representative is uniquely
defined by a minimum.

It was demonstrated that a special kind of LBPs called the ”uniform” patterns
achieve improved rotation invariance and provide better discrimination compared
with the original rotation invariant LBP (Pietikäinen et al. [2000]).

Definition 27 (Uniformity measure of a binary number). Let g be an integer and
b(g) its binary representation. The uniformity measure of the integer g denoted
as U(g) is defined as the number of bitwise 0/1 changes in a b(g),

Definition 28 (Rotation invariant uniform local binary patterns). Given a local
binary pattern of an image I. The rotation invariant uniform local binary pattern
is defined as

LBP riu2
P,R =

⎧⎨⎩
∑︁P −1

p=0 s(gp − gc), U(b(LBPP,R)) ≤ 2
P + 1, otherwise

(3.1)

where b(x) is a binary representation of the number LBPP,R.

For the image retrieval purpose the local binary patterns were applied in the
work of Vatamanu et al. [2013] combined with colour coherence vector and there
were modified by Martolia et al. [2020]. We utilised the rotation-invariant uniform
local binary pattern feature and computed a histogram of this transformed LBP
image as a feature in our experiments.

3.4.3 Gabor filter
Experiments on the mammalian vision system support the spatial-frequency anal-
ysis that maximises the simultaneous localisation of energy in spatial and fre-
quency domains. Moreover, image analysis using Gabor filters is similar to per-
ception in the human visual system (Rivero-Moreno and Bres [2003]), and that
is why they represent a widely utilised technique to generate an efficient image
descriptor.

These filters prove to be useful for texture analysis, image classification and
also for image retrieval (Zhang et al. [2000]). Presented methods provide mean-
ingful image descriptors by computing statistical features from a filtered image.
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Definition 29 (Gabor function). Gabor function is a function over C with pa-
rameters λ, θ, ψ, σ, γ defined as:

g((x, y);λ, θ, ψ, σ, γ) = exp
(︄

−x′2 + λ2y′2

2σ2

)︄
exp

(︄
i(2πx

′

λ
+ ψ)

)︄
,

where x′ = x cos θ + y sin θ and y′ = −x cos θ + y sin θ.

Figure 3.6: Gabor kernels using 4 scales and 6 orientations (Nurhadiyatna et al.
[2015]).

The filter has a real, and an imaginary component representing orthogonal
directions and only the real part is considered.

Definition 30 (Real part of a Gabor function). The real part of a Gabor function
with parameters λ, θ, ψ, σ, γ is defined as:

g((x, y);λ, θ, ψ, σ, γ) = exp
(︄

−x′2 + λ2y′2

2σ2

)︄
cos

(︄
2πx

′

λ
+ ψ

)︄
,

where x′ = x cos θ + y sin θ and y′ = −x cos θ + y sin θ.

Although the Gabor filter is defined on the entire 2D plane, its fixed subset
is applied as a convolution filter. In order to determine a kernel size, we use one
of the most common heuristic measures known as the 3-sigma rule providing a
99 % confidence interval [µ− 3σ, µ+ 3σ]. Therefore, the kernel size is calculated
according to standard deviation σ as k = 2⌊3σ⌋ + 1.
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After convolving an image with Gabor filter with different parameters, we
get resulting filtered images I ′(k, λ, θ, ψ, σ, γ), a magnitude of each of them is
computed. The magnitude of a filtered image by Gabor function is defined as:

EG(k, λ, θ, ψ, σ, γ) =
∑︂

x

∑︂
y

|I ′((x, y);λ, θ, ψ, σ, γ)|

The resulting Gabor statistical features are mean and standard deviation for
all combinations of different chosen parameters. Namely, we changed the param-
eter σ (determining the kernel size) in the experiments.

Definition 31 (Gabor statistical feature vector). Let I be an image of size h×
w and GI(k, σ) be image I convolved with Gabor filter with parameter k and
fixed parameters λ, θ, ψ, γ, σ, where σ is computed by the 3-sigma rule. Gabor
statistical features are defined as:

mk = EG(k)
hw

sk =

√︂∑︁
x

∑︁
y(|G((x, y); k)| −mk)2

hw

Let ki, i = 1, . . . , K be kernel sizes of Gabor kernel. Gabor statistical feature
vector is defined as:

GI = (mk1 , sk1 , . . .mkK
, skK

)

The problem with such features is that it does not provide a rotation invariance
(Zhang et al. [2000]). It is solved by a simple circular shift on a feature map. Total
energy for each orientation is calculated, and the orientation with the highest
total energy is considered the dominant orientation. Afterwards, the elements
are shifted to obtain the dominant direction in the first position. Therefore, this
leads us to potential improvement.

In our experiments, we compare Gabor’s statistical features in terms of stan-
dard distance metrics defined in Section 2.5.

3.5 Shape methods
By shape methods, we mean techniques that generate features related to the dis-
crete derivative of an image by convolving an image with a specific kernel. The
most straightforward approach is a kernel (−1, 0, 1) representing a discrete deriva-
tive in direction of x-co-ordinate and (−1, 0, 1)T in the direction of y-co-ordinate
of an image. A convolution kernel such as Sobel or Robinson compass mask in-
corporates information about the neighbouring pixels with smaller weights. His-
togram of Oriented Gradients additionally computes directions and magnitudes
of an image. It divides them in an appropriate ratio into direction histogram bins
and concatenates computed features into one feature vector.

3.5.1 Shape-based image filters
There are many possibilities for convolving an image with a filter. The Sobel
filter corresponds to discrete derivatives in two directions, whereas the Robinson
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compass mask computes image derivatives in 8-directions. Filters can be applied
to each channel separately, or an image can be converted to greyscale to obtain
only one channel.

Definition 32 (Sobel operator). Sobel operator are matrices Gx, Gy is defined
as:

Gx =

⎛⎜⎝−1 0 1
−2 0 2
−1 0 1

⎞⎟⎠ Gy =

⎛⎜⎝ 1 2 1
0 0 0

−1 −2 −1

⎞⎟⎠
Definition 33 (Robinson compass mask). Robinson compass mask are matrices
Gi, i = 1, . . . , 8 is defined as:⎛⎜⎝−1 0 1

−2 0 2
−1 0 1

⎞⎟⎠
⎛⎜⎝ 0 1 2

−1 0 1
−2 −1 0

⎞⎟⎠
⎛⎜⎝ 1 2 1

0 0 0
−1 −2 −1

⎞⎟⎠
⎛⎜⎝2 1 0

1 0 −1
0 −1 −2

⎞⎟⎠
⎛⎜⎝1 0 −1

2 0 −2
1 0 −1

⎞⎟⎠
⎛⎜⎝0 −1 −2

1 0 −1
2 1 0

⎞⎟⎠
⎛⎜⎝−1 −2 −1

0 0 0
1 2 1

⎞⎟⎠
⎛⎜⎝−2 −1 0

−1 0 1
0 1 2

⎞⎟⎠
A shape-based feature is obtained by convolving an input image with these

kernels and histogram computation.

3.5.2 Histogram of oriented gradients
It has been reported that the Histogram of Oriented Gradients (HOG) performs
well in detecting an object of fixed size. It provides a simple feature vector
describing the orientation and magnitude of the image regions.

Dalal and Triggs [2005] proposed HOG to address object detection, originally
designed for pedestrian detection. These features are calculated by taking ori-
entation histograms of edge intensity in a local region. It is designed to extract
information about the edge’s magnitude and orientation.

In the pre-processing part, an image should be resized or cropped to the fixed
height-width ratio and converted to greyscale. The image with fixed width and
height is divided into fixed blocks, and each block is separated into four sub-
blocks. The gradient vectors of each block are computed by convolution with the
discrete derivative kernels Dx = [−1, 0, 1] and Dy = [−1, 0, 1]T .

Definition 34 (Magnitude and orientation of the gradient). Let I be an image
and Ix, Iy its discrete derivatives computed by convolution of an image I with
kernels Dx = [−1, 0, 1] and Dy = [−1, 0, 1]T respectively.

The magnitude of the gradient is given by

|G| =
√︂
I2

x + I2
y

The orientation of the gradient is given by an angle θ defined by

θ = arctan
(︃
Iy

Ix

)︃
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Figure 3.7: Histogram of oriented gradients computation of one subblock
(Mokhtari et al. [2013]), after computing each subblock, concatenating histogram
of whole block (4 subblocks), and then concatenating blocks into one feature vec-
tor.

Note that the magnitude and orientation are computed for each image pixel
individually. An angle-based histogram is generated by taking a fixed number of
bins and filling the resulting magnitudes into these bins proportionally, depending
on the magnitude value. A feature vector is designed by concatenating oriented
histograms of each block.

HOG was suggested in the field of content-based image retrieval (Halappa
[2013], Halappa and Sudhamani [2015]) in order to detect objects. Alternatively,
it was combined with a discrete wavelet transform (Vijendran and Kumar [2014])
by computing HOG of a transformed image.
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Chapter 4

Deep Neural Networks

This chapter provides an overview of deep neural networks. At first, we discuss
the main idea of its special kind employed on image classification tasks, followed
by the mathematical background. We explain how these networks are used for
other tasks, such as content-based image retrieval. Finally, we provide a summary
of the existing neural network models.

A machine learning model is a mathematical model whose primary goal is to
approximate a function f . The model parameters are trained to approximate a
given function. Unlike optimization, where we take care of the available data,
machine learning models strive to generalize well to reduce an error on the pre-
viously unseen data. Therefore, our data are usually split into train and test set.
The machine learning model parameters are often gradually trained by optimizing
given criteria called a loss function on a train set.

The notion of a Neural Network stands for a special kind of machine learning
model inspired by the neurons in the human brain. A most common example
of a Neural Network is visualized in Figure 4.1, widely known as a multilayer
perceptron, a fully connected class of a feedforward neural network. It can be
visualized as a graph (V,E) consisting of a set of vertices called neurons and a
set of edges called weights. The neurons with the same horizontal coordinate in
Figure 4.1 are called layers.

Each neuron’s output is computed from connected neurons in the previous
layer. It is calculated in terms of weights and biases. Finally, the neuron’s output
is evaluated with its corresponding activation function. The neural network has
one input layer, several hidden layers and one output layer connecting neurons in
consecutive layers in a fully-connected manner. The model is able to learn weights
and biases adaptively by optimizing a loss function. When a model encounters the
wrong classification, it updates the parameters to minimize a given loss function.
This algorithm for training neural networks is called backpropagation.

Training a general Neural Network is done by minimizing an overall loss func-
tion by gradient-based algorithms, such as stochastic gradient descent or adaptive
algorithms such as Adam, RMSProp etc. These gradient-based algorithms refer
to the optimizer of a Neural Network. In order to minimize a loss function,
the step size should be considered, called learning rate in the context of Neu-
ral Networks. The number of epochs corresponds to the number of forward and
backward passes through the neural network.
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Figure 4.1: Multilayer perceptron (Neutelings [2022]).

More complicated models were invented, providing better accuracy in many
tasks due to the increasing computational power. Also, scientists came up with
better backpropagation algorithms. Deep Neural Network represents a special
kind of machine learning model created by stacking many layers on top of each
other. Because of its tremendous success in practical applications, deep learn-
ing models have replaced traditional machine learning approaches in many tasks
(Goodfellow et al. [2016]).

When building a neural network, it is built from the bottom to the top.
Therefore, by the top layer, we mean the last one. Since fully-connected layers
in neural networks bring all the data information together, it incorporates a vast
number of parameters. Therefore, the computation can be slow due to a large
number of hidden layers. In some tasks, not all neurons are connected to each
other, and that is why other kinds of layers have been invented, for example,
Convolutional Neural Networks (CNNs).

As we already mentioned, the goal of Neural Networks is to achieve a suitable
generalization property. Larger datasets help to train a model that generalizes
better and hence reduces an error on previously unseen data, a test set. However,
when working with a smaller dataset, the simpler model can be prefered to avoid
overfitting. One possibility to deal with smaller image datasets is called dataset
augmentation. Dataset augmentation stands for creating new data that resembles
the original samples, for instance, by cropping an image, horizontal flip, or rotat-
ing it. In comparison with handcrafted features where we strive for invariance to
these transformations, dataset augmentation solves invariance automatically. A
choice of dataset augmentation depends on a specific application.
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4.1 Convolutional Neural Networks

convolutional
layers

fully-connected
hidden layers

input
layer

output
layer

Figure 4.2: Deep convolutional neural network (Neutelings [2022]).

Convolutional Neural Networks (CNNs) (LeCun et al. [1989]) are a kind of neu-
ral network for processing data that has a spatial or temporal structure. Typical
examples cover image data, which can be considered as a two-dimensional grid of
pixels. It was demonstrated that CNN-based approaches achieve better results
in image tasks. CNNs employ a linear operation called convolution, which we
already used in handcrafted features, such as the Gabor filter or Sobel opera-
tor. The main difference between using predefined convolution filters and con-
volutional neural networks is that in these networks, a kernel plays the role of a
trainable parameter to extract the crucial features describing an image accurately.

When solving an image-oriented task, the main focus is intended on local
interactions because the individual image pixels nearby are more strongly cor-
related than the further ones. The parameters sharing provides shift-invariance
in the spatial data. Thus, we get fewer parameters and features dependent on
the spatial distribution of the data. Another advantage of convolution is that it
provides a means for working with inputs of variable sizes.

Since the success of Krizhevsky et al. [2012] on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC, Russakovsky et al. [2014]), the current
intensity of interest in deep learning and the potential of CNNs has rapidly in-
creased. The network was trained on a huge annotated dataset ImageNet con-
taining more than 14 million images with over 20 thousand categories. When
networks’ parameters were already optimized on ImageNet dataset, we say that
the network is pre-trained. Therefore, when solving another image classification
task, these models can be applied for inference.

Moreover, the same pre-trained network can solve an image retrieval task.
The generated layers of such networks contain feature maps generated by the
convolutional block, which represent high-level descriptors of an image. The
bottom, i.e. the first layers, describes low-level descriptors similar to those gained
by handcrafted features. When we go deeper, the layers represent more and more
high-level features that appear and are widely used to solve related tasks.
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4.2 Mathematical background
In this section, we provide a mathematical background of neural networks by first
stating the Universal approximation theorem, followed by explaining convolution,
pooling, batch-normalization and activation functions deployed in CNNs. Since
a maximum likelihood principle is used to design a loss function, we derive the
cross-entropy loss function.

4.2.1 Universal Approximation Theorem
Universal approximation theorems imply that neural networks can approximate
any continuous function. It states that approximating function parameters is
possible. However, it does not provide construction. We state one variant from
1989, and its proof can be found in the work of Hornik et al. [1989].

Theorem 3 (Universal Approximation Theorem). Let ϕ : R → R be a non-
constant, bounded and nondecreasing continuous function. For any ϵ > 0 and
any continuous function f : [0, 1]D → R, there exists N ∈ N, v ∈ RN , b ∈ RN ,
W ∈ RN×D, such that if we denote F (x) = vTϕ(Wx + b), where ϕ is applied
elementwise, then for all x ∈ [0, 1]D:

|F (x) − f(x)| < ϵ.

4.2.2 Convolution and cross-correlation
In order to define a generalized milestone of 2D convolution, let us recap the Def-
inition 13. A convolution is a linear operation employing a kernel K representing
the weights of pixels in a spatial configuration calculated over the whole image.

There are another three new parameters covered in the generalized definition
of convolution: the number of channels C, the stride S and the number of output
channels O. The result of the convolution is summer over multiple channels C.

The stride S represents the number of pixels shifts of a kernel K over the
input image matrix. In other words, the output of a convolution is computed for
each S-th pixel in every dimension. For instance, when the stride S is two, it
decreases the size of the output twice in each spatial dimension. The number of
output channels O adds another dimension to the resulting feature map meaning
that convolution is applied multiple times with different kernels.

Definition 35 (2D Discrete Cross-correlation with C channels, O output chan-
nels and stride S). Let I be an input image of size M ×N with C channels, the
convolution layer is then parametrized by a kernel K of total size W ×H×C×F
and is defined as:

(K ⋆ I)i,j,o =
∑︂
m

∑︂
n

C∑︂
c=1

Ii·S+m,j·S+n,cKm,n,c,o

Local interactions are performed in the image spacial dimensions, width and
height.
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4.2.3 Pooling
Pooling is an operation that reduces the output dimension by computing a func-
tion, such as maximum or average, on a bunch of neighbouring neurons. Pooling
over spatial regions produces invariance to translations and even to scaling and
slight rotations. It summarizes the responses over a given neighbourhood to cap-
ture high-level features efficiently (Goodfellow et al. [2016]).

The pooling layer is given by a set size of a pooling window and has no
learnable parameters. Suppose we are given a pooling window A. The max-
pooling operation is computed as maxa∈Aa and the average-pooling as avga∈Aa.
Pooling represents a helpful tool for handling inputs of varying sizes. It can
be designed so that the last classification layer receives the same feature size
regardless of the input size.

The traditional structure of CNN has actually multiple blocks of convolution,
activation and pooling. It contains a fully-connected layer directly before the top
classification layer. A novel approach called global pooling was proposed in the
work of Lin et al. [2013] to replace traditional fully-connected layers in CNNs
in order to avoid overfitting. Instead of adding fully-connected layers on top
of the feature maps, the average of each feature map is computed. It behaves
more naturally and enforces correspondence between feature maps and categories.
Since there is no parameter to optimize, it avoids overfitting in this layer, and it
is more robust to spatial translations of the input.

4.2.4 Activation function
The choice of activation function in the hidden layer is important to control how
well the network model learns. An activation function used in CNNs is usually a
Rectified Linear Unit function (ReLU). It is a non-linear function which decides
whether a neuron should be activated or not depending on a sign of an output.
For more activation functions we refer to Goodfellow et al. [2016].

Definition 36 (ReLU). ReLU(x) = max(0, x)

4.2.5 Batch-normalization
A minibatch refers to equally sized subsets of the dataset over which the gradi-
ent is calculated and weights updated. Batch normalization represents a kind of
model reparametrization that normalizes a minibatch output. Batch normaliza-
tion is a layer that takes the hidden layer’s outputs and normalizes them before
passing them on as the input of the next hidden layer. More precisely, let A be
a minibatch of neuron’s output is transformed as

A′ = A− µ

σ
,

where µ is a vector of the neuron mean, and σ is a vector of the neuron’s standard
deviation.
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4.3 Transfer learning
When a computer vision problem is solved for a different dataset, it may be
advantageous to utilize stored knowledge for a given dataset. Transfer learning
is a process that applies a model to solve different tasks, reducing the cost of the
training.

We want to use a model trained on a different image dataset in practice.
Therefore, the network is initialized with pre-trained parameters instead of ran-
dom initialization. A pre-trained model trained on a large image dataset, such as
ImageNet (Russakovsky et al. [2014]). ImageNet is a large database widely used
in recognition software research. Since ImageNet networks perform classification
tasks, the deep features can be obtained by dropping the last classification layer,
and they are frequently used as general feature extractors.

Fine-tuning of the network is meant as initialization by a pre-trained classifi-
cation network and then training it further. This kind of retraining may improve
performance further by gaining the adaptation ability of the current dataset. It
can be understood as a particular case of transfer learning. During this process,
a lower learning rate is necessary because the original model probably finished
training with a very small learning rate (Straka [2022]). In the context of image
retrieval, the fine-tuning approach was proposed by Babenko et al. [2014] which
enhanced the retrieval accuracy.

4.4 Pre-trained models

Figure 4.3: Comparison of pre-trained models (Canziani et al. [2016]).

Many pre-trained models have been used for competitions in ImageNet classifica-
tion. By removing the classification layer and the fully-connected layers, it turned
out that these feature maps obtained by pre-trained models can solve different

31



tasks. These pre-trained convolution layers provide an excellent descriptor of an
image.

4.4.1 AlexNet (2012)
AlexNet is a convolutional neural network architecture designed by Krizhevsky
et al. [2012]. It won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC, Russakovsky et al. [2014]), a competition for image classification on
the ImageNet dataset held in 2012. The network’s input is an image of a fixed
size 224 × 224 with 3 channels. The data were augmented using translations and
horizontal reflections of random 224 × 224 patches from 256 × 256 images. It
addressed overfitting by data augmentation and dropout.

Figure 4.4: AlexNet architecture from the original paper of Krizhevsky et al.
[2012], explicitly showing the responsibilities between two GPUs that communi-
cate only at certain layers. The image is from the original paper.

Its architecture is designed in repeating layers in the following manner: con-
volution operation rectified linear unit activation (ReLU) and pooling with in-
creasing the number of channels after it. At the top, there are several FC layers
and then the top classification layer.

4.4.2 VGG (2014)
VGG neural network (Simonyan and Zisserman [2014]) is based on AlexNet ar-
chitecture. It takes in 224×224 pixel RGB images. In comparison with AlexNet,
it incorporates small kernels of size 3×3 and stride 1 and 1×1 convolution filters
followed by a ReLU activation. The convolution stride is fixed to 1 pixel so that
the spatial resolution is preserved after convolution. The last three layers are
fully connected, and the last layer contains 1000 neurons.

4.4.3 ResNet (2015)
Since it was demonstrated that neural networks have a low ability to copy infor-
mation, an innovative approach employing residual connections appeared. These
connections are designed in a way that a feature map at a certain level is copied
and added to another layer. They cannot be applied directly when the number of
channels increases. The ResNet architecture was designed similarly to previous
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networks, using mainly 3×3 convolutions. Additionally, batch normalization was
applied.

Figure 4.5: ResNet block (He et al. [2015]).

In the case of ResNet or more advanced architectures, the last layer is a global
pooling layer.

4.4.4 MobileNetV2 (2018)
Sandler et al. [2018] introduced MobileNetV2 with inverted residual structure. It
is designed for mobile phones to reduce computational cost and space complexity.
It incorporates bottlenecks (layers with fewer channels) connected by residual
connections. It employs depthwise separable convolution acting on each channel
separately and pointwise convolution acting on each position independently.

4.4.5 EfficientNet (2019)
One of the most efficient architectures for image recognition is EfficientNet, de-
signed in the work of Tan and Le [2019] which was created to optimize both accu-
racy and computation complexity. The baseline network is denoted as EfficientNet-
B0, and it is based on the inverted bottleneck residual blocks applied in Mo-
bileNetV2. For more details of its architecture, we refer to Tan and Le [2019].

An improved version of EffiientNet, called EfficientNetV2, was published in
April 2021 by Tan and Le [2021]. The architecture is slightly different. It prefers
smaller 3 × 3 kernel sizes, but it adds more layers to compensate for the reduced
receptive field resulting from the smaller kernel size. Moreover, due to the slow
training on large images, the maximum image size is limited to 480.
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Chapter 5

Dimensionality reduction

Nowadays, most datasets have a vast number of variables. There is a high number
of dimensions along which the data is distributed. These dimensions are given
by the number of image feature components in our case. Visual data exploration
can then become challenging. Sometimes it is even impossible to explore high-
dimensional data manually. This problem leads us to understand how to visualise
high-dimensional datasets. The dimensionality reduction can help us understand
the data using fewer variables, retaining meaningful properties of the original
data.

Principal component analysis (Hotelling [1933]) represents a technique that
reduces the number of dimensions. It is a linear transformation preserving the
maximum of the data variance. However, it assumes a linear relationship between
features, which is not satisfied in most cases. When dealing with non-linear man-
ifold structures, the linear algorithms do not yield satisfying results. A manifold
can be intuitively understood as a geometric structure. For a proper definition, we
refer to Hatcher [2000]. High-dimensional data lie on several different but related,
low-dimensional manifolds, such as images of objects from multiple classes seen
from multiple viewpoints. Therefore researchers have tried various approaches to
visualise the data while retaining the local structure. One of the techniques is
SNE (Hinton and Roweis [2002]); another one is t-SNE (van der Maaten and Hin-
ton [2008]), which is based on SNE and offers better visualisation results. Since
humans can imagine the data of two or three dimensions, dimensionality reduc-
tion methods convert the high-dimensional data set into two or three-dimensional
data displayed in a scatterplot.

5.1 Principal Component Analysis
Principal Component Analysis (PCA) is an unsupervised machine learning al-
gorithm typically used for dimensionality reduction. It can also be used for de-
noising. The idea is to reduce the dimensionality while retaining the variation
present in the dataset as much as possible. It employs a linear projection from
the original n-dimensional space to k-dimensional space, where k < n.

The first step requires to centre data to the origin. It means that data on
all the dimensions are subtracted from their means. Next, the first principal
component is computed to explain the most significant amount of variance in the
original data. The second component is orthogonal to the first, and it explains

34



the greatest amount of variance after the first principal component.
Generally, the n-dimensional data are linearly projected into k dimensions by

maximising the data variance. Equivalently, it can be understood as minimising
the sum of the projection distances of the data. PCA can be calculated from
the centred data matrix’s Singular Value Decomposition (SVD). For a detailed
description, we refer to the original paper of Hotelling [1933].

5.2 t-Distributed Stochastic Neighbor Embed-
ding

For high-dimensional data that lies on a non-linear low-dimensional manifold,
keeping the low-dimensional representations of very similar data close together is
necessary. This is typically not possible with a linear mapping. It is important
to retain both the local and the global structure of the data. Such a valuable
technique for visualising high-dimensional data is called t-Distributed Stochastic
Neighbor Embedding (t-SNE). The t-SNE algorithm was designed by Hinton and
Roweis [2002]. It represents a variation of Stochastic Neighbor Embedding and
produces significantly better visualisation results.

The t-SNE algorithm calculates a similarity measure between pairs of in-
stances in the high dimensional and low dimensional spaces. A good measure of
the similarity of two probability distributions is the Kullback-Leibler divergence,
known as KL divergence. Note that the KL divergence is not symmetric.

Definition 37 (KL divergence). For discrete probability distributions P and Q
defined on the same probability space X, the KL-divergence of distributions P and
Q is defined as:

DKL(P∥Q) =
∑︂
x∈X

P (x) log P (x)
Q(x) .

t-SNE minimizes the KL divergence between a joint probability distribution
P in the high-dimensional space and a joint probability distribution Q in the
low-dimensional space. It employs computing pairwise similarities of the data-
points in both high-dimensional and low-dimensional space. Although SNE used
Gaussian distribution to compute the pairwise similarities of the data-points, t-
SNE employs a t-Student distribution with one degree of freedom. The Student
t-distribution has heavier tails than the normal distribution allowing better mod-
elling of far apart distances. In order to optimise this distribution, t-SNE uses KL
divergence between the probabilities p and q and the gradient descent algorithm
is employed. For a detailed description of an algorithm, we refer to the work of
van der Maaten and Hinton [2008].

Since t-SNE suffers from low computational speed, the authors of the original
paper van der Maaten and Hinton [2008] recommended starting by using PCA to
reduce the dimensionality of the data and employing t-SNE afterwards. We used
this technique to visualise neural codes of images before and after fine-tuning in
Chapter 6.
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Chapter 6

Experiments

This chapter provides an overview of our experiments executed on image datasets.
We implemented most of the presented feature extraction algorithms in Chap-
ters 3 and 4. Afterwards, we tested and evaluated them with various parameters
on datasets with annotated classes. Regarding the evaluation, we calculate the
mean average precision (mAP) and the precision at K (P@K) (see Section 2.6).
We compare the results of implemented techniques on the individual dataset
classes. The primitive methods describing the properties of colour, texture, and
shape are usually combined together to achieve finer results. However, there
exists an immense number of combinations generating a new feature combining
colour, texture, and shape properties. Thus, we rather compare them individu-
ally. Furthermore, neural network approaches are able to learn more significant
features from images and outperform any combination of handcrafted features.
We use the pre-trained networks described in Section 4.4 and fine-tune them in
order to improve the retrieval effectiveness. Afterwards, we examine the effect of
centring and normalisation for CNN-based methods. Additionally, we show the
t-SNE visualisation described in Chapter 5 with high-level image descriptors. It
employs high-level image descriptors obtained from feature maps of neural net-
works. t-SNE visualisation helps to understand high-dimensional feature spaces
by approximating the coordinates to two-dimensional coordinates. The main goal
of this work is image retrieval from the dataset, which is collected from posters
without annotation. We will show a web application described in Chapter 7.

6.1 Datasets description
The experiments were performed on the following four datasets: the Wang image
dataset (Wang et al. [2001]), the Patterns dataset (Cimpoi et al. [2014]), the
GPR1200 dataset (Schall et al. [2021]) and the Posters dataset (Wienbibliothek
im Rathaus). The first three datasets are annotated and used for evaluation.
The Wang image dataset consists of 1000 images, Patterns image dataset has
1200 images (created as a subset of Describable Textures Dataset), and GPR1200
image dataset contains 12000 images.

However, the main purpose is to develop an image retrieval system for Vienna
City Library. The original dataset comprises 300 thousand posters gathered in
the Vienna City Library (Wienbibliothek im Rathaus). The Vienna City Library
provided a sample of 5050 images to perform content-based image retrieval.
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6.2 Evaluation
We evaluated the experiments on a test set containing 20 % of the dataset. This
set is evenly distributed into all categories in terms of mean average precision
and precision at ten. We utilised precision at ten in order to demonstrate how
many images from the same category appeared in the first ten positions on av-
erage. However, the use of mean average precision is more frequent in retrieval
systems. It employs the ordering of all relevant retrieved images. Since the model
performance depends on a chosen distance metric (manhattan, euclidian or co-
sine distance), the results are compared for each metric separately. We test the
retrieval performance of each method across various parameters, and then we
recommend parameters giving the best results.

Moreover, we propose a feature vector normalization for CNN methods based
on the work of Zouhar et al. [2022] developed in the context of natural language
processing retrieval. The centering and normalization transformation is given by
x′ = x−x̄

∥x−x̄∥ , where x̄ =
∑︁n

i=1 xi

n
for n feature vectors xi, i = 1, . . . , n. This pre-

processing ensures both Euclidean distance and cosine distance giving the same
retrieval results due to the same ordering of retrieved images, thus the same mean
average precision.

Lemma 1. Let x, y ∈ R normalized vectors (using L2 norm). Then it holds:

argmink∥x− y∥ = argmaxk(x · y).

Proof.

argmink∥x− y∥ = argmaxk − ∥x− y∥
= argmaxk − (x · x)2 − (y · y)2 + 2(x · y)2

= argmaxk(−1 − 1 + 2x · y)
= argmaxk(x · y)

6.3 Parameters
In this section, we focus on parameters of implemented feature extraction algo-
rithms summarized in Table 6.1 that we run in our experiments.

Each colour method tested both RGB and HSV colour space. The colour
histogram and CCV require the number of quantisation levels of each colour
component. The colour grid employs a parameter of the number of grid blocks in
x and y directions in which an average colour is computed. The spatial chromatic
histogram is not implemented.

Texture methods require parameters such as pixel distance and angle parame-
ters. GLCM computes co-occurrences of grey-level pixels based on the parameter
of the distance and angle between two pixels. Each parameter combination is de-
noted by (d, a). An integer d represents a number of distances taking into account
all integer pixel distances from one to d. Parameter a represents the number of
evenly spaced angles. The resulting feature is concatenated into one feature vec-
tor. Results were evaluated for (d, a), such that d = 1, 2, 3 and a = 4, 6, 8, 10.
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LBP method considers two parameters: the radius r and the number of points
evenly spaced points p in the circular neighbourhood. We implemented the uni-
form patterns variant, ensuring the rotation invariance. A pair of parameters
is denoted as (p, r). It is tested on parameters (8, 1), (8, 2), (16, 2), (16, 3) and
(24, 3). Gabor filter is applied on an image with multiple θ where θ determines
an angle of the filter. A number of evenly spaced angles denoted by a is tested
as a parameter. The kernel size of the Gabor filter is computed by 3-sigma rule.
Therefore it is determined by the σ parameter of the filter. Tested parameters
were (σ, a) for σ = 1, 3, 10 and a = 4, 6, 8, 10.

Parameters in implemented shape methods incorporate the number of his-
togram bins determining the length of the feature vector. Since the HOG fea-
ture requires a fixed size of an image, the image is downsampled to a fixed size
100 × 100, and it requires a parameter of the cell size c and the number of the
angle bins b. Determining the HOG feature length is complex, and we use the
cell size eight and eight angle bins. The resulting HOG feature is of length 3872.

Neural network approaches utilised pre-trained models on the ImageNet for
the classification task. In order to solve the retrieval task, transfer learning is
applied. The last classification layer is dropped to obtain a high-level feature
vector describing image properties. The performance of different kinds of ar-
chitectures is evaluated and compared. The networks chosen for a comparison
are AlexNet, VGG16, MobileNet-v2, ResNet-152 and EfficientNet-b3. The pre-
trained networks on ImageNet dataset work well on Wang dataset. However,
their performance on Patterns dataset is slightly worse since it contains images
different from typical images from ImageNet dataset. Therefore, we fine-tune
these networks in order to improve the retrieval performance further. We tested
the different optimiser algorithms and learning rate schedules. We monitor loss
curves on the train and a validation set. Afterwards, we describe details of the
implementation and training of neural networks.

38



Method Parameter Feature length
Colour Histogram (q1, q2, q3) q1q2q3

Colour Grid (x, y) 3xy
Colour CCV (q1, q2, q3) q1q2q3

Texture GLCM (d, a) 5ad
Texture LBP (r, p) p+ 2
Texture Gabor (s, a) 2a
Shape Sobel q 2q
Shape Robinson q 8q
Shape HOG (8, 8) 3872
CNN AlexNet - 9216
CNN VGG 16 25088
CNN MobileNet v2 62720
CNN ResNet 152 2048
CNN EfficientNet b3 1536

Table 6.1: The summary of used parameters and feature length of each imple-
mented method. Note that Gabor, LBP and Sobel feature are usually very small
when considering the tested parameters.

6.4 Retrieval results
We present the retrieval results of each implemented technique and compare the
evaluation metrics for each class. Pre-trained networks are usually not sufficient
for the more challenging datasets. Therefore, we fine-tune the networks in order
to improve the retrieval performance.

6.4.1 Wang image dataset
The Wang image dataset (Wang et al. [2001]) (also known as Corel-100 image
dataset as a subset of Corel-10000 image dataset) consists of 1000 images in JPEG
format. Each image size is 256 × 384 or 384 × 256. Dataset is grouped into 10
categories: Africans, beaches, monuments, buses, dinosaurs, elephants, flowers,
horses, mountains and food. The dataset was extensively utilised to test the
image retrieval effectiveness because the small dataset size and the availability
of class information allow running performance evaluation. A sample of Wang’s
image dataset is shown in Figure 6.1.
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Figure 6.1: Examples of each category from Wang’s image dataset (Wang et al.
[2001]).

We run implemented methods on several parameters and metrics. The ones
giving the best results in terms of precision at ten are summarised in Table 6.2.
The colour-based approaches performed better than the texture and shape-based.
Although the colour coherence vector was proposed as a generalisation of a colour
histogram, its existing implementation does not outperform a colour histogram on
the Wang dataset. Processing a CCV feature is computationally slow. Therefore,
an image is down-sampled before the feature extraction part, which deteriorates
the results. Moreover, CCV requires a threshold parameter τ that is set as one-
hundredth of the number of pixels of an input image. The Gabor filter performed
best from the texture methods and Robinson from the shape methods. Except for
the Gabor filter, all handcrafted features performed better using the manhattan
distance. For the methods using colour histogram, intersection distance results
were similar to the manhattan distance (see Table 6.2). Thus we compare only the
manhattan distance (L1 norm of the difference) and cosine distance. All CNN-
based approaches with cosine similarity outperformed other metrics. Therefore,
we recommend using the L1 norm for handcrafted features and cosine similarity
for CNN approaches.

We calculated the mean average precision for each method on each image
category. Mean average precision represents an average precision average over a
set of all test queries. However, mean average precision on a given image category
is averaged over a set of test queries on that category. The resulting table is shown
in Figure 6.2.

Histogram works well on all image categories except for beaches, mountains
and monuments, where it does not depend on colour. The grid colour approach
performs well in the dinosaurs, horses and flowers category because of the spatial
distribution of the colour.
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Wang Method Parameter P@10 L1 P@10 C mAP L1 mAP C
Colour Histogram (8, 8, 8) H 0.765 0.669 0.528 0.459
Colour Grid (6, 6) H 0.620 0.603 0.425 0.412
Colour CCV (8, 8, 8) R 0.694 0.618 0.454 0.401
Texture GLCM (3, 4) 0.498 0.485 0.286 0.276
Texture LBP (2, 16) 0.577 0.567 0.367 0.358
Texture Gabor (3, 8) 0.587 0.5945 0.364 0.424
Shape Sobel 128 0.5475 0.559 0.356 0.356
Shape Robinson 128 0.579 0.566 0.374 0.361
Shape HOG (8, 8) 0.564 0.412 0.331 0.222
CNN AlexNet - 0.697 0.901 0.455 0.740
CNN VGG 16 0.532 0.935 0.346 0.812
CNN MobileNet v2 0.785 0.926 0.620 0.816
CNN ResNet 152 0.967 0.971 0.846 0.903
CNN EfficientNet b3 0.941 0.973 0.795 0.909

Table 6.2: The comparison of methods’ performance on the Wang dataset. We
denote HSV colour space by H, RGB colour space by R. The retrieval results
are evaluated on both manhattan distance (denoted as L1) and cosine distance
(denoted as C). Note that cosine distance works in general better for CNN-based
approaches, whereas manhattan distance on handcrafted features. Eucliden dis-
tance performance was surprisingly poor, therefore we do not show it.

Texture and shape methods do not consider colour information; they perform
substantially worse than colour approaches on colourful images like the Wang
dataset. However, the texture and shape methods outperformed colour methods
in retrieving flowers. Produced features are usually combined with colour fea-
tures. However, we compared these methods individually. Gabor filter performs
the best compared with other texture methods on categories without the object
specification, such as beaches, foods and monuments. Although LBPs consider a
local circular neighbourhood of size 2, it is able to retrieve well on buses, dinosaurs
and flowers. GLCMs care about all co-occurrences of pixels within a prescribed
distance, and they performed significantly worse in the dinosaurs category than
other methods.

Since shape methods retrieve images only based on edges, these methods
performed surprisingly well. Robinson’s method outperforms Sobel in categories
of objects with edges in horizontal, vertical, and diagonal directions, such as
buses, elephants, dinosaurs, horses, and monuments. Since HOG was designed
for object detection of pedestrians, it gives the best results for objects of the
same size. Thus, it outperforms both shape methods in categories of animals
such as elephants, horses and dinosaurs. Interestingly, HOG does not perform
well on flowers. Furthermore, HOG includes spatial information of gradients; it
also behaves well on categories such as beaches and mountains.
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Figure 6.2: Comparison of mAP of handcrafted methods on different categories.

Figure 6.3: Comparison of mAP of CNN-based methods on different categories.
Note the different colour scale than in Figure 6.2.
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In comparison with handcrafted features, CNN approaches perform signifi-
cantly better. The networks are ordered by the time of their invention. An archi-
tecture of EfficientNet-b3 gives the best results in all image categories except for
foods in terms of mAP. The most challenging image categories are Africans and
monuments. We consider the retrieval effectiveness sufficient. Thus we utilised a
pre-trained EfficientNet-b3 model for image retrieval.

The t-SNE visualisation of Wang dataset is shown in Figure 6.4 to demonstrate
that high-level image feature vectors of the images from the same class form
clusters in the high-dimensional feature space.

Figure 6.4: The visualization of the Wang dataset with t-SNE. We employed
pre-trained EfficientNet-b3. Note the distant clusters of dinosaurs, flowers, buses
and horses. The clusters of flowers and horses are zoomed.

6.4.2 Patterns dataset
The Patterns image dataset is formed by taking a subset of Describable Textures
Dataset (Cimpoi et al. [2014]). It contains ten image categories: banded, che-
quered, cobwebbed, crystalline, dotted, fibrous, lacelike, potholed, stratified, and
striped. We created this dataset to test the texture-based approaches and com-
pare them with the state-of-the-art neural networks. Images in the same category
have similar textures, but the colour usually differs. A sample of Patterns dataset
is shown in Figure 6.5.
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Figure 6.5: Example of each category of Patterns dataset, a subset of Describable
Textures dataset (Cimpoi et al. [2014]). The colours over the images in each class
differs in most cases, but the patterns are similar.

We tested implemented methods with several parameters and metrics. Eval-
uated results are summarized in Table 6.3. As expected, the texture and shape
methods outperform colour methods on the Patterns dataset. Gabor filter achieved
the best results from handcrafted features. HOG performs well in detecting ob-
jects. Therefore, it is deficient in this context.

The patterns dataset is less similar to ImageNet dataset than the Wang
dataset. Since CNN-based approaches are trained on ImageNet, they achieve
slightly worse results than the Wang dataset. Handcrafted features performed
better using manhattan distance except for GLCM, Gabor, and Sobel, in which
cosine similarity metric gives better results. We recommend using manhattan dis-
tance for handcrafted features and cosine similarity for CNN-based approaches.

Patterns Method Parameter P@10 L1 P@10 C mAP L1 mAP C
Colour Histogram (8, 8, 8) H 0.395 0.367 0.185 0.175
Colour Grid (4, 4) H 0.308 0.267 0.164 0.147
Colour CCV (8, 8, 8) R 0.417 0.395 0.201 0.196
Texture GLCM (3, 10) 0.397 0.479 0.180 0.251
Texture LBP (3, 24) 0.419 0.427 0.198 0.202
Texture Gabor (1, 4) 0.474 0.518 0.219 0.288
Shape Sobel 8 0.489 0.495 0.265 0.273
Shape Robinson 8 0.470 0.503 0.251 0.267
Shape HOG (8, 8) 0.360 0.351 0.229 0.204
CNN AlexNet - 0.618 0.851 0.303 0.594
CNN VGG 16 0.612 0.915 0.299 0.707
CNN MobileNet v2 0.730 0.913 0.390 0.666
CNN ResNet 152 0.917 0.935 0.683 0.736
CNN EfficientNet b3 0.923 0.939 0.655 0.688

Table 6.3: The comparison of methods’ performance on the Patterns dataset.
Note that colour methods are deficient. Texture methods performed on Patterns
dataset employing a higher number of angles outperformed those using the small-
angle parameter, except for Gabor filter. Not that Gabor filter outperformed all
other handcrafted features with the feature length of eight.

44



All neural network approaches using the cosine similarity metric give the bet-
ter results than using any other metric. We examined the effect of the centring
and normalisation—the pre-processing slightly improved results by about one per
cent for ResNet and EfficientNet and four per cent for MobileNet on Wang image
dataset (see Figure 6.6). Similar results were obtained on Patterns dataset.

Figure 6.6: Comparison of the features pre-processing based on centring and
normalisation on the Wang and the Patterns dataset. Mean average precision is
evaluated for pre-trained networks. The results are compared in terms of cosine
distance with and without described feature pre-processing. Note the different
y-axes.

Since Patterns dataset is more challenging, the handcrafted features failed
in the retrieval. Even though the texture-based and shape-based methods out-
performed colour methods, the performance of neural networks is significantly
better. However, when employing the pre-trained neural networks on Patterns
dataset, the results are not satisfying. The results for each image category of
CNN approaches are shown in Figure 6.7. Categories such as cobwebbed, crys-
talline, dotted and striped were retrieved with greater mAP than other categories
because they contain real-world objects or at least commonly found textures on
man-made objects (dotted and striped). Images from other categories were re-
trieved with a lower mean average precision. Figure 6.8 shows that some image
categories barely form clusters.

Since the dataset is annotated, a fine-tuning of neural networks may help
us. Fine-tuning is done by training a pre-trained neural network to adapt to the
current dataset. We will consider fine-tuning the ResNet152 neural network since
it performed the best in terms of mean average precision from the state-of-the-art
neural networks (see in Figure 6.7).
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Figure 6.7: Comparison of mAP of CNN methods on different categories on
Patterns dataset. Note that the colour scale range. A pre-trained ResNet152
architecture achieved a highest mean average precision 0.74 from the chosen neu-
ral networks. Dotted category was retrieved the best by VGG network. ResNet
significantly outperformed EfficientNet on Lacelike category.

Figure 6.8: The visualization of the Patterns dataset with t-SNE. We used the
pre-trained ResNet152.
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Fine-tuning results

In the following, we describe some parts of our implementation. We fine-tune
ResNet152 network. In other words, we take a pre-trained network with initialised
weights and biases and set parameters such as learning rate, optimiser of neural
network to train the network. Typically, learning rate is chosen smaller than
usual because the parameters of the pre-trained network were already optimised
after training on a huge dataset ImageNet. Since the dataset contains image class
annotation, we can train it as a supervised classification task. As described in
Chapter 4, we aim to minimise a given loss function (categorical cross-entropy)
on a training set. At the same time, we monitor the validation loss of each epoch.
When we encounter a validation loss smaller than ever before, we save the model
as the model with the best loss. We stop the training part when a validation
loss still increases for several epochs. The training and validation loss curves are
shown in Figure 6.9, accuracy is shown in Figure 6.10.

The Python script cnns finetuning patterns.py is utilized when training
neural network. We used a model ResNet152 , optimizer Adam (an algorithm
that modifies the attributes of the neural network, such as weights and learn-
ing rate) and initial learning rate lr = 0.00001 . The scheduler is chosen as
ReduceLROnPlateau (PyTorch documentation Paszke et al. [2019]) with param-
eters of factor=0.9 and patience=2 . Training of one epoch took approxi-
mately 13 minutes, therefore training of the model took for about a one day.

Figure 6.9: Comparison of training and validation loss while fine-tuning
ResNet152 network on Patterns dataset. Note that the training loss is decreasing,
wheras validation loss is decreasing and increasing from approximately epoch 90.
This is phenomenon is known as overfitting. A model with the lowest validation
loss is saved in order to generalise well.
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Figure 6.10: Accuracy fine-tuning ResNet152 network on Patterns dataset.

After training the neural network, we load a model with the smallest val-
idation loss saved as a .pth file in the feature extraction load model.py
script. Based on this model, high-level image features are computed from a penul-
timate network layer. Therefore, each image from a dataset is described by its
corresponding feature, and we save it as a .npy file.

The last step involves computing the overall mean average precision or the
mean average precision computed on each class (based on a boolean parameter).
The Python script distances evaluation.py is used for this purpose, which
loads a .npy file of image features and evaluates retrieval effectiveness in terms
of mean average precision. Figure 6.11 is generated by comparing mean average
precision on classes. t-SNE visualisation shown in Figure 6.12 proves that the
image feature vectors in the high-dimensional space are clustered since they are
clustered in two-dimensional space.

Figure 6.11: Comparison of mAP of ResNet152 and fine-tuned ResNet152 on
different categories on Patterns dataset.
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Figure 6.12: The visualization of the Patterns dataset with t-SNE. The clusters of
potholed and banded categories are zoomed. We finetuned ResNet152 network.

6.4.3 GPR1200 dataset
Newly introduced GPR1200 dataset by Schall et al. [2021] includes 12 000 images
from 1 200 categories, each category containing 10 images. It was collected from
six different image domains from the listed collections and proposed as General-
Purpose Retrieval Benchmark. GPR1200 dataset provides a suitable dataset
covering many of the domains found in image collections.

1. Google Landmarks V2 (natural and architectural landmarks)

2. ImageNet Sketch (black and white sketches of animals and other objects)

3. iNat (plants, animals, insects and fungi)

4. INSTRE (planar images and photographs of logos and toys)

5. SOP (products and objects, partly isolated)

6. IMDB Faces (human faces)
State-of-the-art models trained on ImageNet (Russakovsky et al. [2014]) gen-

erating high-level image descriptors are fine-tuned. We used this dataset for eval-
uation purposes of deep learning methods. The sample of the GPR1200 dataset
is shown in Figure 6.13.
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Figure 6.13: Example images from all of the subsets of the newly introduced
GPR1200 dataset (Schall et al. [2021]). Domains from left to right, top to bottom:
Landmarks, Nature, Sketches, Objects, Products, and Faces.

We employed the pre-trained architectures of ResNet152, EfficientNet-B0,
EfficientNet-B3 and EfficientNet-B7 networks. Since the dataset consists of 1200
categories, we evaluate only the overall mean average precision. Based on the
previous observations, we employed a cosine distance measure.

Method Parameter mAP
CNN ResNet 152 0.474
CNN EfficientNet b0 0.488
CNN EfficientNet b3 0.476
CNN EfficientNet b7 0.417

Table 6.4: Comparison of methods’ performance of pre-trained state-of-the-art
methods on the GPR1200 dataset. We used cosine distance since it provided the
best results among other distance measures.

Fine-tuning results

Since this dataset is the most challenging, we fine-tune ResNet152 as on the
Patterns dataset. The process of fine-tuning described in the previous section is
similar; thus, we describe it briefly. We used cnns finetuning gpr1200.py for
further training of the pre-trained network. Since GPR1200 is a large dataset
of high-resolution images, we decided on a greater learning rate to speed up the
early part of the training. We set the same parameters, except for the initial
learning rate set as lr=0.000065 . When training ResNet152, each epoch took
approximately one hour and fifteen minutes.
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Figure 6.14: Comparison of training and validation loss while fine-tuning
ResNet152 network on GPR1200 dataset.

Figure 6.15: Accuracy fine-tuning ResNet152 network on GPR1200 dataset.
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We also tried to fine-tune EfficientNet-b3, which is quite faster. However,
by fine-tuning the ResNet we achieved saving a model with a smaller validation
loss. The resulting loss curves are shown in Figure 6.14 and accuracy on 6.15.
From Figure 6.14 we see that the initial learning rate is too big. Therefore, we
recommend degrading it for training.

From fine-tuning performed in script cnns finetuning gpr1200.py , we con-
tinue with loading a saved model from the .pth file, process image features in
the feature extraction load model.py with appropriate parameter. The fea-
tures are again saved in a .npy file. In the end, we evaluate the resulting mean
average precision in distances evaluation.py script.

The fine-tuned model did not improve the retrieval effectiveness. Since the
GPR1200 dataset covers various scenes, it may more similar to ImageNet dataset,
therefore parameters should be changed carefully. The work of Schall et al. [2021]
provides the-state-of-the-art research together with implemented code. It shows
retrieval results comparison over a wide range of models. The best model (ViT-
L) tested in the work achieves mean average precision of 0.632, followed by the
results of Swin-L achieving the value of 0.63 on a whole dataset. Mean average
precision is also computed for each of the six dataset categories (see Schall et al.
[2021]).

6.4.4 Posters dataset
The Vienna City Library (vie) contains important documents related to the his-
tory of Vienna, Austria. It preserves 500,000 books, 2,000 newspapers and maga-
zines, 300,000 posters, 500,000 autographs. A sample of 5050 posters scanned in
high-quality resolution is provided by the Vienna City Library in order to perform
a CBIR task. There are advertisements, concert tickets, or political propaganda
handouts from the war period within the dataset. Examples of images are shown
in Figure 6.16.

Figure 6.16: Examples of images from Posters dataset vie.

This dataset is not annotated and, therefore, not the retrieval performance
is not evaluated. However, the pre-trained EfficientNet-b0 model is employed
since it gave the best results on GPR1200 dataset. An inference is applied to
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each image, and the penultimate network’s layer is used as an image descriptor.
The retrieval results for a sample of ten queries are shown in Figure 6.20. t-SNE
algorithm is applied to computed high-level image features, and the t-SNE plot
is visualised in Figure 6.17.

Figure 6.17: The visualisation of the Posters dataset with t-SNE. Since the
dataset was not created artificially for computer vision task evaluation as in
previous datasets, it is not divided into several clusters. We can observe that the
text images are close to each other in the lower part. The images of women are
accumulated on the left side.

6.5 Results on example queries
The retrieval results are shown in the following Figures 6.18, 6.19, 6.20 and 6.21.
The visualisation is implemented in Python library matplotlib.

Running the show retrieved images function from the script distances.py
chooses plots these figures, where there is a query image on the left. There appear
the top K similar images for K defined by a user. The features for each dataset
image are already pre-computed. Other parameters of the script are the dataset
name, the number of retrieved images and the choice of a particular method,
utilised parameter and metric. We chose a variant of the state-of-the-art Effi-
cientNet or ResNet152 with cosine distance when generating these images. The
ResNet152 is fine-tuned for Patterns dataset.
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Figure 6.18: Retrieval results of the Wang dataset. One query image from each
image category is on the left and retrieved images are in left-to-right order.
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Figure 6.19: Retrieval results of the Patterns dataset. One query image from
each image category is on the left and retrieved images are in left-to-right order.
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Figure 6.20: Retrieval results of the Posters dataset. Each query image is a
Posters database image on the left and retrieved images are in left-to-right order.

56



Figure 6.21: Retrieval results of the GPR1200 dataset. Each query image is a
GPR1200 database image on the left and retrieved images are in left-to-right
order.
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Chapter 7

Web application

A web application is designed to serve a purpose: to solve an online image retrieval
task. From the user’s point of view, it is easy to use, fast and does not require any
installation. An application was developed in order to retrieve images from the
Posters dataset. This dataset contains images of posters gathered in the Vienna
City Library.

7.1 Navigation
Users can simply access a web application by the web address. It requests a user
to upload a digital image as a file from the computer. It can be a poster from the
Posters database or any desired image. After choosing an image file and clicking
on an upload button, the five most similar images to a given image appear. Since
the dataset is relatively small and the features are computed efficiently, displaying
similar images takes less than two seconds. Moreover, an application is designed
so that a user can upload a new image repeatedly. The result of a user request
for a poster of cake from the Posters dataset is shown in Figure 7.1.

7.2 Implementation details
The Graphical User Interface is based on a simple HTML webpage form. This
form sends the selected image to the Flask server, which provides the service for
counting and comparing image features.

For our backend, we used Python because it has an extensive machine learning
community. We worked with standard Python libraries such as NumPy, Pandas,
PyTorch, OpenCV and Flask. The search for the most similar images is de-
signed the same way as the typical CBIR pipeline. The Posters database image
features are pre-computed and stored in a file regarding its offline stage. An on-
line stage consists of computing uploaded images’ features based on pre-trained
EfficientNet-b3 and then comparing this image feature to all database images
with a cosine distance metric. The database images with the smallest cosine
distance value are retrieved and displayed.
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Figure 7.1: Web application example. A user chooses a query image, and the
five most similar images from the Posters dataset appear. Notice that all of the
retrieved images contain food.
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Chapter 8

Conclusion

This thesis explored techniques to tackle the Content-Based Image Retrieval task.
Its main advantage lies in the usage of images without textual description. Index-
ing images by meaningful feature vectors and returning the closest representations
is an efficient image retrieval method. Since the design of valuable features of all
database images is computationally slow, calculating the database image repre-
sentations beforehand is key to providing a fast image retrieval.

8.1 Summary
We started by introducing the general knowledge of this topic. In detailed re-
search on handcrafted image features, we defined image descriptors in math-
ematical language utilized before the advent of convolutional neural networks.
Secondly, we explained a general overview of convolutional neural networks. Fur-
thermore, we briefly described the architectures of the existing state-of-the-art
pre-trained models and explained their application in the CBIR task.

We implemented various feature extraction algorithms and ran them on ex-
isting image datasets with several parameters. Afterwards, the methods’ perfor-
mance was explored by evaluating the mean average precision on different images.
t-SNE algorithm provided excellent visualization of high-level image descriptors in
two-dimensional space. On top of that, we fine-tuned the state-of-the-art neural
network on a dataset with annotated classes and achieved better retrieval results.
Dataset augmentation was employed. In order to estimate the performance of the
image classification task, we monitored training and validation losses. We used
transfer learning to address the image retrieval task.

We propose the use of fine-tuned neural networks for datasets with anno-
tated classes. For datasets without annotations, we propose using the pre-trained
networks. The use cosine distance metric for all CNN-based approaches is rec-
ommended. We also suggest considering features pre-processing. All presented
experiments were tested on the pre-defined queries from each dataset with defined
distance measures.

Based on the investigation of the effect of the centring a normalization of
feature vectors, we recommend considering it as a potential improvement. Mainly,
we contributed to the University of Vienna by designing and implementing an
efficient image retrieval pipeline. In addition, we developed a functional, easy
to use web application to solve the CBIR task on a dataset of posters from the
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Vienna City Library. A user may upload their image file. By slightly modifying
an application, we may utilize it for another dataset. When the image database
features are pre-computed, we may use them internally on our image collections.

8.2 Future work
Unlike handcrafted features, convolutional neural networks offer strong adapta-
tion abilities. The state-of-the-art approaches offer promising results on large
datasets such as GPR1200, designed for general content-based image retrieval by
Schall et al. [2021]. Due to their enormous potential, we propose to research their
abilities further.

Although we researched CBIR and successfully deployed an efficient model on
various datasets, we provide suggestions for future work:

• To provide an implementation for multiple queries.
• Exploration of other network’s architecture.
• To improve a web application interface.
• To include user-defined parameters of the number of retrieved images and

the type of counted features in the web application.
• Feature extraction and methods’ comparison on larger image datasets.

8.3 State-of-the-art research
Content-based image retrieval is still a research problem, and many deep learning
researchers try to invent more complicated models that achieve better results.

Image retrieval on the dataset of three-dimensional buildings was investigated
in the work of Radenovic et al. [2018] on the Oxford and Paris dataset. Its anno-
tation was introduced about ten years ago when the annotators had a different
perception of the image retrieval limitations. Thus a new dataset annotation was
introduced. Such image retrieval strives to retrieve images of buildings captured
from different viewpoints on different scales. The research of Radenovic et al.
[2018] provide an extensive evaluation of image retrieval methods. One proposed
method was fine-tuned ResNet with presented Generalized-Mean pooling (GeM
pooling). GeM pooling includes learnable parameters. Thus the standard non-
trainable pooling layers, such as max pooling or average pooling, are special cases.
It was demonstrated that GeM Pooling boosts the performance over standard
pooling layers. Moreover, the triplet loss and contrastive loss were introduced
and deployed (Radenović et al. [2019]). For further research the instance image
retrieval we refer to related papers (see Radenović et al. [2016], Radenović et al.
[2019]).

Furthermore, there already exists another state-of-the-art approach using an
architecture called transformers, which researchers presently investigate in the
context of content-based image retrieval in the work of El-Nouby et al. [2021] and
Gkelios et al. [2021]. The retrieval effectiveness of transformers was investigated
by Schall et al. [2021] on the GPR1200 dataset. It has been compared to the
results of fine-tuned networks such as EfficientNet.
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vision transformers for image retrieval. CoRR, abs/2102.05644, 2021. URL
https://arxiv.org/abs/2102.05644.

Marios Gavrielides, Elena Sikudova, and Ioannis Pitas. Color-based descriptors
for image fingerprinting. Multimedia, IEEE Transactions on, 8:740 – 748, 09
2006. doi: 10.1109/TMM.2006.876290.

Socratis Gkelios, Yiannis S. Boutalis, and Savvas A. Chatzichristofis. In-
vestigating the vision transformer model for image retrieval tasks. CoRR,
abs/2101.03771, 2021. URL https://arxiv.org/abs/2101.03771.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Kavitha Halappa. Image retrieval using hog and edge features. 11 2013.

Kavitha Halappa and M.V. Sudhamani. Content-based image retrieval using
edge and gradient orientation features of an object in an image from database.
Journal of Intelligent Systems, 25, 01 2015. doi: 10.1515/jisys-2014-0088.

Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural features for
image classification. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-3(6):610–621, 1973. doi: 10.1109/TSMC.1973.4309314.

Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
URL https://cds.cern.ch/record/478079.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/
abs/1512.03385.

Geoffrey E. Hinton and Sam T. Roweis. Stochastic neighbor embedding. In NIPS,
2002.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert L. White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2:359–366,
1989.

Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:498–520, 1933.

Jing Huang, S Kumar, Mandar Mitra, Wei-jing Zhu, and Ramin Zabih. Image
indexing using color correlograms. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 05 1997.

Noor Ibraheem, Mokhtar Hasan, Rafiqul Zaman Khan, and Pramod Mishra. Un-
derstanding color models: A review. ARPN Journal of Science and Technology,
2, 01 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in

63

https://arxiv.org/abs/2102.05644
https://arxiv.org/abs/2101.03771
http://www.deeplearningbook.org
https://cds.cern.ch/record/478079
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

A. Ramesh Kumar and Devaraj Saravanan. Content based image retrieval using
color histogram. 2013.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.

Chuen-Horng Lin, Rong-Tai Chen, and Yung-Kuan Chan. A smart content-based
image retrieval system based on color and texture feature. Image and Vision
Computing, 27(6):658–665, 2009. ISSN 0262-8856. doi: https://doi.org/10.
1016/j.imavis.2008.07.004. URL https://www.sciencedirect.com/science/
article/pii/S0262885608001522.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013. URL
https://arxiv.org/abs/1312.4400.

Mamta Martolia, Nilesh Dhanore, Anupam Singh, Vivek Shahare, and Nitin
Arora. A modified local binary pattern (lbp) for content-based image retrieval.
29:1630–1644, 01 2020.

Maryam Mokhtari, Parvin Razzaghi, and Shadrokh Samavi. Texture classification
using dominant gradient descriptor. pages 100–104, 09 2013. ISBN 978-1-4673-
6184-2. doi: 10.1109/IranianMVIP.2013.6779958.

Subrahmanyam Murala, R.P. Maheshwari, and Balasubramanian Raman. Local
tetra patterns: A new feature descriptor for content-based image retrieval.
IEEE transactions on image processing : a publication of the IEEE Signal
Processing Society, 21:2874–86, 05 2012. doi: 10.1109/TIP.2012.2188809.

Izaak Neutelings. Neural networks, 2022. URL https://tikz.net/neural_
networks/.

Adi Nurhadiyatna, Arnida Latifah, and Driszal Fryantoni. Gabor filtering for
feature extraction in real time vehicle classification system. 09 2015. doi:
10.1109/ISPA.2015.7306026.

T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002. doi:
10.1109/TPAMI.2002.1017623.
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