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Introduction
In 2020, approximately 480 000 cars were produced in the Škoda Auto plant
in Mladá Boleslav [53]. Every car passes through the quality control process
at the end of the assembly line, which ensures that the car will not leave the
manufacture with serious defects that could potentially endanger customers or
significantly reduce the lifespan of the car.

Most of the quality check tasks are performed by trained workers, who may be
subject to fatigue, or other factors impacting the reliability of the quality check.
This provides a great opportunity for automation via computer vision, which has
the potential to lower the cost of the overall process and at the same time achieve
super-human accuracy.

This thesis is focused on the problem of verifying the correctness of the mount-
ing of the rims. Rims come in different sizes and shapes. On a properly assembled
car, the rims on all four wheels should be the same. However, during the assem-
bly, there is a possibility that a wrong rim could be attached to the car, which can
harm the stability of the car on the road and impact the safety of the customer.

Therefore we aim to develop a proof of concept of a real-time system with the
ability to automatically detect whether all four rims on an assembled car match,
meaning they are of the same type and the same size.

Thesis Structure
The first chapter introduces the domain of car rims, describes the collection of
the data and shows challenging properties of the data.

In the second chapter we discuss approaches that can be used in car and rims
detection, build a dataset and experiment with two object detection models.

The third chapter is devoted to classification of rims based on their shape and
color. We build datasets and then test prediction accuracy of multiple models.

The fourth chapter presents our knowledge of size of a rim in connection
with other car components and proposes a method that can be provide a rough
estimation.

The fifth chapter combines results of previous chapters to build a proof of
concept of a system that is able to track cars and decide whether all rims on a
car match.

The last chapter evaluates the outcomes of previous chapters and introduces
ideas and possible extensions that can be employed in the future work.
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1. Problem Analysis

1.1 Rims and their Visual Appearance
First, we provide an exact definition for a wheel, a rim and a tire, because
in common language these terms can be ambiguous. In this thesis, we will call
a wheel a combination of a rim and a tire. A rim is the rigid core of a wheel
usually made from metal. A tire is mounted on the rim and ensures good contact
with the surface under the car. It is usually made of rubber-like material. For
visualization see Figure 1.1.

The main purpose of a rim is to provide rigid support for a tire and to transmit
forces that influence the movement of the car, for example transmit rotational
force coming from the engine to the tire [27].

Figure 1.1: Visualization of a rim and a tire.

1.1.1 Rim Structure and Mounting
The important structural components of the rim considered in this work are de-
picted in Figure 1.2. In the middle of the rim, there is a center hole, surrounded
by the center disc. From the center disc we see spokes going to the outer cir-
cumference of the rim. On the circumference there is the valve stem which is
used for inflating the tire. In the center disc, there are bolt holes.

The mounting of the wheel follows a specific procedure. First, the wheel is
put on the wheel hub and centered using the center hole, afterwards it is secured
with wheel bolts.

The wheel bolts form a pattern that can be defined by two numbers. The first
describes the number of bolts. The second is the pitch circle diameter(PCD),
which denotes the diameter of a circle going through the centers of the bolts, see
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Figure 1.2: Rim structure - center hole is marked yellow, center disc is green,
spokes are blue, valve stem is orange and bolt holes are red.

Figure 1.3: PCD vizualization - pitch circle is the green circle that passes through
the centers of the wheel bolts (which are marked red).

Figure 1.3. It is measured in millimeters. For example, 5x112 means 5 bolts with
PCD equal to 112 mm.

1.1.2 Properties and Design
There are several important properties of a rim that influence both the visual
appearance of the rim and also the functionality of the whole car.
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One of them is the rim diameter. A larger wheel needs to be heavier and
requires more energy to change its movement speed.

In terms of weight, the aim is to make the rims lighter, so that the weight of
the whole car is lower, which can reduce fuel consumption as well as make the
car more manoeuvrable. Lighter rims also cause less stress for the suspension
system, which is absorbing forces from the wheel, for example when the car hits
a bump on the road.

The rim also needs to be strong enough to maintain its shape under various
conditions, such as the weight of the car it needs to carry, or the forces that
emerge during the ride. It also should not easily shatter.

The shape of the center disc and spokes plays an essential role in the aesthetics
of the car, but it also defines overall strength and integrity of the rim, influences
aerodynamics, and can contribute to the cooling of the brakes [27].

1.1.3 Materials and Surface Treatment
These various demands, such as low weight, high strength, cost and tendency to
shatter, conflict each other and influence the choice of the rim material. Among
the most commonly used materials we can find steel and aluminium alloys. Steel
is cheaper, stronger, but heavier, and can be enhanced by the addition of other
elements. Aluminium alloys are lighter and still strong enough [27].

Occasionally also more rare materials such as carbon or titanium can be seen.
These are more expensive but provide better properties. Moreover, the rim con-
sists of several parts and each can be made from different material, which can
lead to further enhancements of its features.

The surface of the rim can have various treatments such as paint, chrome,
power-coating or polishing, which influence its susceptibility to scratches, oxida-
tion, etc. They also change optical properties of the rim such as its reflectivity
and color.

1.1.4 Nearby Components
When looking at the mounted wheel from the side of the car, we do not see only
a rim and a tire, but there are also other components visible through the rim and
around the tire, see Figure 1.4.

Through the rim, we can often see a brake disc and a brake attached to it.
Above the tire, there can be parts of the suspension system such as a spring.
This description is not exhaustive and in general, there can be more inner car
components that are visible through the rim or around the tire. Furthermore, we
can see the opposite wheel at certain angles and of course the surface that the
car stands on, which is a conveyor belt in this scene.

1.2 Data collection
This work is based on data collected in Škoda Auto plant in Mladá Boleslav. The
Škoda Auto a.s. company allowed us to install the equipment, gather the data
and use them for research purposes.
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Figure 1.4: Nearby Components - brake disc is marked blue, brake is red, sus-
pension system is green, other space visible inside a car is orange and conveyor
belt is violet.

The data was collected in the environment, where quality control takes place.
All the cars stand still on the slowly moving belt. The area is very well lit by
multiple sources. See example of this environment in Figure 1.5.

(a) (b)

Figure 1.5: Example of quality control environment in Škoda Auto. (The images
come from a video on the official Škoda Auto website [52].)

1.2.1 Setup
The cameras were arranged on both sides of the conveyor belt, attached to the
walls where the lights are installed. Camera A was recording cars from the right
side, camera B from the left side. A top-down schema of the setup is shown in
Figure 1.6. Images of the scene taken by individual cameras at the same time are
shown in Figure 1.7. There is one image of an empty scene and one with a car
passing by. Notice that in empty scenes, we can see the opposite cameras. Also
camera B is tilted slightly downwards compared to camera A.
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Figure 1.6: Schema of the camera setup in top-down view.

(a) Camera A with an empty scene. (b) Camera B with an empty scene.

(c) Camera A with a car. (d) Camera B with a car.

Figure 1.7: Examples of views from both cameras.
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The hardware and a recording script were prepared in the thesis Vı́t [49] that
was developing a computer vision system for measurement of the level of cooling
liquid. They collected data in a different place of the same plant.

1.2.2 Collection
The data was collected by Adam Novozámský, who is the supervisor of both this
and Vı́t [49] thesis. The same cameras were used, meaning Logitech BRIO 4K
Stream Edition webcams. The description of the script as quoted from Vı́t [49,
§2]:

“We wrote it as an endless cycle, that launched in two parallel threads ffm-
peg.exe on both cameras simultaneously. The frame rate was set at only 1 fps and
the total duration was set to 10 minutes per video. During this time all frames
were recorded in motion JPEG (MJPEG) and after that encoded in h265.”

1.2.3 Properties
Due to the nature of the script, the 10 minutes videos are not directly connected,
but there is an unrecorded gap of approximately 20 seconds between subsequent
videos. Altogether, there are approximately 204.5 hours of video recorded over
the course of twelve days. For this thesis, we are using 34 hours of video, which
should be sufficient sample for experiments and training of models.

From the data, we can get rough estimation of the movement speed of the
belt. For the car model Octavia 3. generation, which is 467cm long [54], seen
through the camera A, it takes about 40 frames from seeing the front of the car
on the left side of the camera view to seeing the back of the car in the same place.
Because we know the frame rate is 1 frame per second, the estimation is circa
11.5 cm/s.

Another observation is that at this speed, we can see the parts of an individual
car in the scene for about 60 frames, parts of the wheel for about 15 frames and
the whole wheel is clearly visible for about 10 frames. See example of sequence
of frames with clearly visible rim in Figure 1.8

1.3 Challenges
The overall quality of the data is very good. We have Full HD resolution with
reasonable compression that does not impact important features in the data, and
the camera views capture all details that we are interested in.

Despite that, there are some characteristics that can pose a challenge. Firstly,
some of the frames suffer from high brightness, which can hide important local
features, such as the shape of spokes. For example see Figure 1.9. It is probably
caused by the lights reflecting from the car.

Another issue can be that certain car paints are highly reflective, and therefore
they can act like a mirror and reflect the wall where the camera is mounted, see
Figure 1.10a.

Because the data was collected during standard work shifts, there can be
people and objects moving in the scene. An example of an unexpected object in
the scene can be wheel of a scooter passing by, see Figures 1.10c and 1.10d.
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Figure 1.8: Sequence of 12 frames from camera A illustrating conveyor belt move-
ment speed. Car in individual images goes from left to right. Images are in se-
quence from left to right and from top to bottom.

(a) High brightness. (b) Normal brightness.

Figure 1.9: Comparison of frames with high and normal brightness for the same
rim. Notice that with high brightness, some features of the rim are barely visible.
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In terms of people, they can be seen walking, standing, sitting in the car,
etc. In most cases, this does not cause any problems, but occasionally they stand
in front of a rim, hiding it for the whole time it goes through the scene. See
Figure 1.10b.

(a) Car paint with high reflexivity. (b) Staff standing in front of a rim.

(c) Scooter - camera A. (d) Scooter - camera B.

Figure 1.10: Challenges in data.

1.4 Selected Approach
As mentioned in the introduction, the goal of this thesis is to develop a proof of
concept of a real-time system with the ability to automatically detect, whether
all four rims on an assembled car match, meaning they are of the same type and
the same size.

We decided to divide this task into three sequential tasks:

• Detection of the car and its wheels.

• Determining, whether all four rims are of the same type

• Comparison of sizes of the rims

We dedicate one chapter for each of these tasks, analyze related work and
available approaches, build dataset and describe the solutions we selected, as
well as their results. The advantage of this approach is that datasets and models
created for these tasks may serve as resources for other works.
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2. Car and Wheels Detection
The goal of this chapter is to choose and tune model for car and wheel detec-
tion. First we present related work which is split into works using only classical
computer vision techniques and into works utilizing neural networks. Then we de-
scribe considered solutions in detail, create dataset and finally train and evaluate
two selected models.

2.1 Related Work
The topic of car and wheel detection is well studied because it has many practical
real world applications such as vehicle counting, autonomous driving, surveillance,
car park monitoring, etc.

This section is divided into two parts, the first one is focused on works using
traditional computer vision techniques, the latter one is concerned with the usage
of convolutional neural networks.

2.1.1 Traditional Computer Vision
A great introduction to the topic of car and wheels detection is the research
paper of Vinoharan et al. [47]. It introduces a three-staged approach that is able
to detect the contour of a car from the side-view.

At first, they try to identify wheels using Hough transform [40] for circles.
Hough transform will be described in detail in the considered methods. To elim-
inate false positives, meaning circle structures that are not wheels, they build a
database of SURF[4] descriptors. These descriptors are, in simple terms, points
of interest that can be matched to the detected circles and distinguish a correctly
identified wheel from a false positive. Example of similar descriptors and their
matching is shown in Figure 2.1

Figure 2.1: Visualization of matching of ORB descriptors, which are similar to
the SURF descriptors.

In the second stage, they try to estimate a rough contour of the car using
heuristics based on the wheel positions and proportions of the car. In the last
stage, they use snake algorithm[25] to fit the proposed contour to the correct
contour of the car.
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Unfortunately, the reported results are inconclusive because their dataset is
small (100 images) and consists of images of cars on white backgrounds that
were collected from Google Images. Therefore, we cannot predict results of this
approach in a realistic scenario.

The work of Hultström [22] uses classical methods to find wheels as well. This
work utilizes real-world recordings of a four lane road from the side view.

Their strategy is to decompose the image into small windows and for each
window detect, whether there is a wheel or not. The windows are first converted
to feature vectors, using features such as pixel intensities and local binary pat-
tern [22], and then they are fed to a random forest classifier [22]. The final result
is then improved using heuristics and clustering techniques.

Another work Chávez-Aragón et al. [11] is focused on identifying 14 regions
of interest in vehicles from the side view, such as wheels, windows, door handles,
etc. The process starts with the detection of the wheels. It is performed using a
classifier trained on Haar-like features [48], using Hough transform as a backup
method.

Once the wheels are detected, promising search zones for other parts are
proposed using methods that take into account their positions relative to the
position of the rear wheel. In the promising search zones, the car parts are
detected using Cascade of Boosted Classifier [48] based on Haar-like features.

The work of Grigoryev et al. [17] claims to be used in the industrial vehicle
classification system deployed on toll roads in Russia. It detects wheels using
fast Hough transform. Because the Hough transform is prone to detection of
non-wheel circular objects, authors propose an additional method to filter out
non-wheel circles in the Hough space.

These four presented works illustrate the most common approaches to wheel
detection. From those four mentioned works, we can see, that for wheel detection,
they rely on either Hough transform, or they extract features from a small window
in the picture and then they use machine learning models to decide, whether it
contains a wheel.

For a general case of traffic surveillance, we refer to overview work of Al-Smadi
et al. [1]. This paper mentions important techniques used in traffic monitoring
systems, for example:

• Frame differencing [41] - is a method used to detect motion in the videos.
It looks for the pixels that are changing in a few consecutive frames. The
change is detected by subtraction of those frames from each other - the
pixels in subtraction that exceed a selected threshold are considered to be
moving.

• Background subtraction [41] - is a method used to separate static back-
ground of the scene. The static background can be estimated for example
by computing median of a pixel over a high number of consecutive frames.

2.1.2 Neural networks
Neural networks are machine learning models, which are able to both extract
features and perform the required task, such as classification or object detection.
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In this thesis, we will focus on a specific category of neural networks - deep convo-
lutional neural networks [26]. These networks use convolutional layers, which are
suitable for image data processing, and achieve state of the art results in many
computer vision related tasks.

The work of Song et al. [43] uses convolutional neural networks (CNN) to
perform vehicle detection, tracking and vehicle counting from highway camera
recordings. The paper provides useful overview of traditional methods used in
vehicle tracking, as well as reference works, that use neural networks for that
purpose.

First they perform road segmentation to eliminate environmental influences.
For vehicle bounding box detection they decided to use YOLOv3 network [32]
for its speed, high accuracy and the ability to detect objects of various sizes. For
tracking, they use ORB algorithm [36] to extract features of the vehicle in the
bounding box and compare it with near vehicles in the next frame.

2.2 Considered Methods
Based on the presented related work we selected several common approaches
suitable for car and wheel detection. In this section we describe them in more
detail and discuss their advantages and disadvantages.

2.2.1 Hough transform
Hough transform is a well known method for detection of geometric shapes that
can be defined by a small number of parameters, for example lines or circles. That
is why it is suitable for detection of rims or wheels. To illustrate the main idea
of the algorithm, we will describe what the process looks like for circle detection.

A circle in the image can be defined by three parameters, for example two
coordinates of the center and its radius. Each of those parameters can represent
one dimension in a three-dimensional space. A point in this space can be mapped
to a circle with a given center and a radius.

We can discretize this space, for example to integer values, and limit each
dimension to a reasonable interval. For example coordinate values would be from
zero to maximal width/height of the image. This will leave us with a finite three
dimensional array of cells, where each cell can represent one set of circles.

We can iterate through all the cells and for each cell (and the circle it repre-
sents) check, whether there is enough evidence that this circle is present in the
image. Such evidence can be for example the number of edge pixels in canny edge
detection [10] present in the area of the inspected circle.

We will consider the cells with the largest values in the array, or cells that
pass a certain threshold and declare them to be circles in the image.

The downside of this algorithm is that the space and time needed grows expo-
nentially with the number of parameters of the shape. Furthermore in practice,
the algorithm is prone to finding false positive circles in unexpected places, that
is why the parameters of the array need to be carefully tuned or there needs to
be another procedure that would eliminate these false positives.

On the other hand, the algorithm provides simple explanation how shapes
were found and is fast enough for real-time processing. There are several versions
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of the algorithm [42] that improve its speed and memory consumption.

2.2.2 Window classification
The fixed window classification is based on the premise that we can expect certain
objects to be found in certain parts of the image. For example in our case of rim
detection, we can imagine a window in the center of the image, which will be
the size of the largest rim and we can expect that the rim will go through this
window in one of the frames, as it is moving through the scene.

We can extract features from this window and pass them to a machine learning
classifier to decide whether the window contains rim.

This procedure is fast, but can encounter problems when the rim is covered
by another object exactly when it should appear in the window. The solution
would be to use multiple windows in different locations where we expect rims, or
use a sliding window, that would go through the whole image. This would slow
down the detection, but ensure that no parts of the image are missed.

The general problems of these methods are scales and aspect ratios of the
objects in the images, which can be solved by running the sliding window on
downscaled versions of the images. In our data, both scale and aspect ratios are
well known, so it would not be an issue.

2.2.3 Object detection CNNs
Another suitable approch to detecting rims and wheels are object detection net-
works. Here we present three popular architectures.

R-CNN

The first one is the family of R-CNN networks. It consists of R-CNN [16], Fast-
RCNN [15] and the most advanced Faster-RCNN [34]. The main idea is to divide
object detection into four independent tasks [13]:

• Extraction of regions of interest - algorithm, or part of the network, that is
responsible for selecting parts of the image, that seem to contain an object.

• Feature extraction - is usually a pretrained CNN that extracts features from
the raw image.

• Classification module/head - algorithm, or part of the network, that classi-
fies region of interest based on its features.

• Localization module/head - algorithm, or part of the network, that produces
tight bounding box for an object.

In comparison to its predecessors, Faster-RCNN has all modules implemented
in one end-to-end trainable neural network. This makes it much faster in both
training and inference and improves the accuracy. In general, this architecture
provides high accuracy, but is slower than the following two models.
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SSD

The next model is the Single-shot detector [28], SSD in short. It is a single-
stage detector, which means that it does not perform region proposal and then
classification separately as the R-CNN family, but does both at once. This makes
it significantly faster.

The architecture consists of 3 stages [13]:

• Feature extraction - handled by a pretrained CNN that extracts features
from the raw image.

• Downscaling feature layers - performed in convolution layers that enable
detection on various scales.

• Non-maximum suppression - ensures, that there will be only one bounding
box for one object.

YOLO

The last family of models is called You Only Look Once, shortly YOLO. The first
three versions v1 [33] , v2 [31] and v3 [32] were presented by original authors. In
2020, two more versions were introduced by different authors. They called them
similarly: v4 [7] and v5 [23]. The YOLO architecture is popular because its speed
enables its usage on mobile devices, such as smartphones.

The main idea [13] is to divide the image into a square grid where each cell is
responsible for prediction of a given number of bounding boxes, the probability
that they contain an object and the object class. Similar to SSD, YOLO utilizes
a pretrained CNN for feature extraction and uses convolution layers of different
sizes to detect objects of multiple scales.

A problem resulting from the design of the architecture is that if more than
the expected number of objects were present in one cell, the network would not
be able to detect them all. However this should not be a problem for our use
case, as we are detecting a small numbers of relatively large objects.

2.2.4 Segmentation CNNs
The last approach we present are segmentation CNNs which provide not only
boundaries and the class of the detected object, but it provides also a mask that
specifies the object location at the pixel level. Representative architectures for
this task may be Mask-RCNN [19] and U-net [35].

Mask-RCNN is an architecture that adds a mask generation head on top of
Faster-RCNN. U-net is a fully convolutional architecture originally developed for
precise biomedical image segmentation, but it was already adopted to wide range
of segmentation tasks.

The downside of image segmentation is that the labelling of custom data is
more time consuming than in case of bounding boxes, even when using semi-
automatic tools that provide a pixel mask proposal based on pretrained machine
learning models.
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2.2.5 Selected approach
In this thesis, we have decided to experiment with Hough transform and YOLO
neural network. Hough transform should give us baseline model for wheel detec-
tion and is fast enough for real-time evaluation. YOLO is expected to provide
bounding box detection of cars and wheels with high accuracy because our task
with only two classes and stable environment should not be hard to learn. The
second reason for YOLO is fast inference that enables the system to react in real
time and on top of that leave remaining computing power for tasks that will be
discussed in the following chapters.

2.3 Data preparation
Training a neural network for object detection requires providing training data
where the objects to be detected are indicated and correctly labeled. We decided
to manually label the wheels and cars in the training images using bounding
boxes. Bounding box is an axis-aligned rectangular shape, that tightly contains
the object. This approach was selected because the labelling procedure is much
faster than marking polygons, or pixel masks, and is sufficient for our needs -
detection of position and size of the object.

2.3.1 Computer Vision Annotation Tool
To label the data, we used Computer Vision Annotation Tool by Sekachev et al.
[39], also known as CVAT. It is a mature, free, open-source tool built on Django
web framework. The used version of core was 3.13.3.

It supports multiple labeling options, such as rectangles, polygons, polylines,
points, etc. It is also able to export the labeled dataset into common formats
such as COCO, ImageNet, PASCAL VOC, TFRecord, YOLO and many more.

Figure 2.2: Computer Vision Annotation Tool - User Interface.

17



2.3.2 Dataset
The dataset consists of 1000 training frames, 250 validation frames and 250 testing
frames. It can be used either as an input of a machine learning model, or for
tuning parameters in different environmental conditions in case of algorithms like
Hough transform.

To create the dataset, we split the collected data (videos) in the order they
were recorded into three sets in ratio 2:1:1. From the first set we randomly se-
lected 1000 frames without repetition for training. In the similar way, we created
validation examples from the second set, and test examples from the third set.

In the dataset, an object was labeled a car every time we recognized it as a
car part, that is not a wheel. If the car was visually split into multiple parts by
another object (passing person), we label all the visible car parts with the same
bounding box. A wheel was labeled only if it was recognizable by human, meaning
it was present in the scene and not mostly overshadowed by other objects. The
dataset also contains images with no labels, for example training set contains
91 images of this kind. These images help the algorithm to avoid false positive
detections.

2.4 Experiments
At first we tune Hough transform as a baseline model to see results that can be
reached with a relatively simple procedure. Afterwards YOLOv5 is trained to
detect both cars and their wheels and achieve acceptable results that can be used
in practice and run in real-time.

Setup

To give context to time measurements such as train time and inference time of
models, the following hardware setup was used: Dell G5 15 notebook equipped
with Intel Core i7 10750H Comet Lake processor and NVIDIA GeForce RTX 2070
Max-Q 8GB graphic card. The same hardware was used throughout the whole
thesis.

Hough transform

For Hough transform, we used an implementation provided by openCV [8], which
is a variant of Hough transform called 21HT [51] for circle detection, that is
optimized to minimize memory consumption.

To improve its properties, we performed several preprocessing steps. First, the
image is downscaled to reduce both time and space requirements of the algorithm.
Then it is converted to grayscale, which is the required input format for Hough
transformation. Finally the image is blurred using a Gaussian blur to reduce
noise and erase high frequency components, that can lead to false positives. All
these steps are visualized in Figure 2.3

To tune parameters of the preprocessing pipeline and Hough transformation,
we implemented a simple tool where the user can go through the training part
of the dataset, view images in the individual steps of the pipeline and easily
change the parameters. Although there are possible approaches for automatic
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(a) Downscaled (b) Grayscale

(c) Blur (d) Hough transform

Figure 2.3: Hough transform preprocessing pipeline

selection of Hough transform parameters, we performed the parameter tuning
manually because it was less time demanding and the reached accuracy is not so
crucial since the Hough transform will serve only as a baseline model. During the
parameter tuning, we mainly focused on eliminating false positive detections.

The results measured on validation data are summarized in Table 2.1 and
they are satisfactory for a baseline method.

True positives 128
False negatives 54
False positives 0

Table 2.1: Results of Hough transform on validation data

The true positives are not always perfect contours of the rim. This is caused
by the fact that the contour of the rim in the image can also be elliptical because
of the rotation of the wheel to the camera. See example in Figure 2.4a.

The 54 reported false negatives can be split into three groups. In the first
group of roughly 20 samples, the rim was clearly visible and we expected detection
but it failed. Those were mostly black rims and rims with small part missing due
to the edge of the image. Example is presented in Figure 2.4b. The second group
of about 10 samples are rims with more than half of the rim area missing. Those
detections would be very hard for Hough transform anyway and should not be
considered as a detection mistake. The third group of size around 20 are wheels,
where the rim area is not visible, but we can see a part of tire. This group is the
hardest and it also should not be considered as a failure.

The rough estimation of runtime of the preprocessing and Hough transforma-
tion on a single frame is circa 8 ms which is excellent for real-time processing.
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(a) Elliptical rim contour (b) Partially visible dark rim

Figure 2.4: Problematic cases for our Hough transform detection

YOLOv5

To train YOLOv5 [23], we used Github repository from the original authors. The
repository contains models with pretrained weights on COCO val2017 dataset
and training scripts with a support for augmentation.

In order to present our results, first we need to introduce the mAP metric [13],
which is used to evaluate object detection models.

The data is labeled as bounding boxes with class of the object they contain.
Models predict bounding boxes, the class of contained object and its probability.

To say that the predicted box is a good fit for the golden box, we will use a
numeric value called Intersection over union. It is computed as the area of their
overlap divided by the area of their union. To use it in practice, we need to set
a threshold value that specifies a good fit, for example .5, which means, that the
intersection of the boxes needs to be at least 50 percent of their combined area.

For a model, we can also measure precision and recall. Precision computes
how many of our detections were correct. Recall computes how many golden
data we detected. To influence precision and recall of a model, we can introduce
a threshold to the probability of model detections. That will consider only de-
tections with probability equal or larger than threshold. Going through all the
values of the threshold and plotting precision and recall to a graph, we obtain a
precision-recall curve. This curve can be plotted for individual classes of object
and provides an insight into the behavior of the model.

On the precision-recall curve, we can calculate average precision, shortly AP,
either by calculating the area under curve, or by sampling its value in equidistant
values of recall, such as 0.1, 0.2,... 1.0. By calculating mean of AP over all classes,
we get mean average precision, shortly mAP. In practice, we can see mAP written
together with a number, such as mAP@0.5, which defines the intersection over
union threshold we are using. mAP@.5:.95 then means average of mAP over
interval of intersection of union ranging from 0.5 to 0.95 with step value 0.05.

Going back to the training, we have selected two small models from the
YOLOv5 family made for mobile devices. The first one is YOLOv5s, which
has 7M parameters, the latter is YOLOv5n with 1.9M parameters. Their size
should be both sufficient for this task and small enough to leave resources for the
necessary follow-up tasks described in the next chapters.

The training was done for 50 epochs starting with the default parameters in
the repository that are documented in Attachment A.1. The results on validation
data for YOLOv5s are in Table 2.2 and for YOLOv5n in Table 2.3. In both cases,
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the models have successfully predicted almost all data with .5 threshold, and were
fairly successful with higher thresholds.

Estimation of inference time on a single frame for YOLOv5s is circa 26 ms
which is suitable for our application.

Class Labels Precision Recall mAP@.5 mAP@.5:.95
Wheel 182 0.983 0.97 0.993 0.962
Car 300 0.983 0.98 0.993 0.928
All 482 0.983 0.975 0.993 0.945

Table 2.2: Results of YOLOv5s on validation data

Class Labels Precision Recall mAP@.5 mAP@.5:.95
Wheel 182 0.978 0.989 0.99 0.952
Car 300 0.993 0.966 0.988 0.938
All 482 0.986 0.978 0.989 0.945

Table 2.3: Results of YOLOv5n on validation data

Discussion

Hough transform as a baseline model performed very well. Because we have
labeled all wheels recognizable by a human, most of the reported false negatives
should be considered too hard for this method and we see much better results
when at least a half of the rim area is visible. In case the false negatives would
cause problems and leave undetected wheels, the parameters can be tuned to
minimize false negatives which would cause rise of false positives, that can be
filtered out by an additional method.

YOLOv5s provides high accuracy and sufficient inference speed and we will
be using it further in this work. It will play role in data preparation for chapters 3
and 4 and furthermore it will be part of the pipeline of the final system. We believe
that this model is flexible enough to cope with slight changes in environment and
differences in cars and wheels. In case there would be a major drop in accuracy,
the model can be trained on new data. It should not be a problem in practice,
as training on our machine took about 100 minutes.
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3. Rim classification
In this chapter, we will use wheel detection model from the previous chapter to
build a database of rims and split them into classes based on the differences in
their shape and color.

Because we were not able to find related work that is performing rim or wheel
classification, that is why we start this chapter with a description of classification
techniques which can be used. Afterwards we continue with creation of datasets
and in the end we experiment with selected models.

3.1 Considered Methods

3.1.1 Traditional Computer Vision
In traditional computer vision techniques we will introduce an approach that
uses combination of suitable feature extraction and machine learning classifier.
This approach was already mentioned in the related work in the second chapter
where Hultström [22] combines features such as pixel intensities and local binary
pattern with a random forest classifier.

We decided to try combination of histogram of oriented gradients [20] feature
extraction technique, shortly HOG, together with support vector machines (SVM)
classifier. We will not go deeper in description of SVM because we consider it
outside of the scope of this thesis and we will mainly focus on HOG because it
is an interesting method for description of shapes in the image. Moreover the
number of features that reasonably describe overall geometry of the image can
be quite small.

Before we introduce the main idea, we need to present the definition of the
pixel gradient. A pixel usually has 4 neighboring pixels with whom it shares its
edges. By computing the difference between its right neighbors value and left
neighbors value, we get number that we will call gradient in horizontal direction.
Similarly, by computing the difference of the top and bottom neighbors, we get
gradient in vertical direction. If we combine gradient in horizontal direction
and gradient in vertical direction, we get a two-dimensional vector that will be
called gradient of the pixel. We can also represent this vector by its angle and
magnitude.

Now we split the image into a grid of square cells where each cell will be 8
pixels per side. The goal is to represent this cell of 64 pixels by 9 numbers that
we will call histogram of gradients. Each of these numbers are representing one of
the angles: 0, 20, 40.. 140, 160 degrees. Notice that those angles represent only
half of the circle. It is because we are not interested in directions of the vectors.

For each pixel, we take its angle and add its magnitude to the nearest angles
in the histogram according to the distance in degrees. For example if we have
pixel with angle of 25 degrees and magnitude 10, we will add 7.5 to the 20 degree
value in histogram and 2.5 to the 40 degree value in histogram.

This will provide us with histogram of the most important angles in the cell.
We can see visualization of these histograms in Figure 3.1.
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(a) Original image (b) Histogram of oriented gradients

Figure 3.1: Visualization of histogram of oriented gradients feature extraction
method - we can see individual cells, each with a histogram in its center.

HOG can me improved to be more resistant to changes in brightness by aver-
aging histograms over several cells. We call the unit of this averaging a block.

3.1.2 Neural networks
In the last ten years, the deep learning community comes every year with new
ideas and models that greatly increase accuracy on the datasets compared to
their predecessors (especially in the task of image classification). For overview
of this development and the most important milestones, we refer to the survey
of Alzubaidi et al. [2].

In this section, we will focus on description of transfer learning and one of the
currently best performing classification network EfficientNet.

The transfer learning [2] works with the idea that if we have a smaller dataset,
we can take a model pre-trained on large dataset, for example ImageNet [37], and
use its learned representations to train our dataset quicker and better. It is done
by making the last few layers trainable and the rest of the network not trainable,
in jargon those layers are called frozen layers. The number of layers we want to
unfreeze for training differs based on the used model, dataset size and complexity.

In terms of EfficientNet, its authors Tan and Le [44] examined previous ap-
proaches to model scaling depth, width and resolution of the network and they
came up with a novel way how to do it more efficiently and achieve better results.

Furthermore they have proposed a new model called EfficientNet, that was
found using neural network search and they scale it by the technique they have
developed. It is based on mobile inverted bottleneck MBConv from the Mo-
bileNetV2 [38] and squeeze-and-excitation optimization [21]. See the description
of the smallest EfficientNet-B0 baseline network in the Figure 3.2
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Figure 3.2: EfficientNet-B0 baseline network - table taken from the original pa-
per [44].

3.2 Data preparation
The goal of data preparation in this chapter is to create datasets of rims for
an image classifier. We decided the format to be square images of wheels. The
resolution we are using is 256×256, which is smaller, than the original image, but
still contains fine details of a wheel.

3.2.1 Preprocessing
At first, we went through the data and we have estimated, that the largest wheel
in the dataset fits roughly into a square of size 770×770. Afterwards, the YOLO
object detection network from the previous chapter was utilized. We ran object
detection inference on every frame. For each bounding box with class ”wheel”, we
calculated its center and extracted a cropped image of size 770×770 with center
in the center of bounding box.

In case part of this cropped image was out of the frame, we moved it to the
border, so it would fit into the image. Each of these cropped images were then
scaled down to 256x256 using bicubic interpolation.

3.2.2 Classes Overview
As we went through all extracted images of rims, we have identified 31 unique
rim classes that have differences in either shape of the rim, color of the rim or
both. We tried to hand pick at least 300 images of each class. In most cases it
was possible, but there were 10 classes that had less than 300 images in the whole
dataset. For visual overview of classes see Figure 3.3.

The procedure for image selection was that these images does not necessarily
need to have a whole wheel visible, but the class has to be identifiable by a human.
It usually means that at least half of the wheel needs to be visible in the image.

The labels are numeric values and the idea behind them is that every unique
shape was labeled as multiple of ten, for example label ’140’, and color variants
are defined by addition of a single digit number, see label ’141’.

From the selected images were created two datasets.
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Figure 3.3: Overview of all rim classes - images of individual classes have label
and sample count below themselves. The classes where we acquired less than 300
samples are highlighted by a red rectangle.
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3.2.3 Dataset21
In this dataset every class has 100 training samples, 25 validation samples and
25 test samples (ratio 4:1:1). Because not every class has enough samples for the
selection procedure we are using, we decided to include only classes where we
had 300 and more samples. Only 21 classes satisfy this condition, that is why the
dataset is named Dataset21.

The procedure to create the dataset was following: in every class the samples
were ordered by time and then split into 3 groups in ratio 4:1:1. From the
first group the 100 training samples were randomly selected, from the second
group 25 validation samples were randomly selected and from the third group
25 test samples were randomly selected. The important note is that we did not
want to have samples from one car in both training and validation set, or in
both validation and test set, that is why the sizes of the group were not exactly
4:1:1 but we manually ensured that the dividing place between the sets is clearly
between two cars.

The detection of the wheel in the previous chapter can make errors and pro-
duce bounding boxes that are false positives, meaning they are labeled as ”wheel”
but in fact they do not contain any. For that reason we have added one more class
’other’ to the dataset. It consists of cropped images that do not contain wheel,
or they do, but it’s mostly hidden behind other objects, thus we can’t recognize
which class it is.

In the sum, the dataset has 2100 training samples, 525 validation samples and
525 testing samples.

3.2.4 Dataset31
This dataset consists of the previous dataset plus the 10 classes that were left out
in the previous Dataset21.

For classes that have less than 150 samples, we took all the data ordered
by time and split them into train/val/test sets in ratio 4:1:1. For classes with
more than 150 samples, we again split the data into three groups in ratio 4:1:1
and randomly selected 100 training samples from the first group, 25 validation
samples from the second group and 25 test samples from the third group.

Because those classes have low count of samples, we cannot enforce that one
car, or even one wheel, does not appear in more than one set. The only guarantee
is that even if one wheel is used in more sets, the samples will always come from
different frames.

In the real production, one would be able to acquire enough data for every
class to avoid this data leakage. We incorporate this mainly to test how will the
models behave with higher class count and low number of samples in some of
them.

Similarly to the previous dataset, the ’other’ class is also added to this dataset.
In the sum, the dataset has 2816 training samples, 711 validation samples and
711 testing samples.
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(a) Original (b) Coarse dropout (c) Rotate

(d) HSV change (e) RGB shift (f) Brightness, contrast

(g) Motion blur (h) Optical distortion (i) Combination of all

Figure 3.4: Rim dataset augmentation

3.2.5 Augmentation
In order to support generalization, we decided to use data augmentation [9].
Types of applied augmentations are presented in Figure 3.4.

The coarse dropout acts like objects that can appear in front of the rim.
Rotation augmentation simulates slight rotation of the rim. It enhances data
because even though in the original dataset a single rim can be sampled multiple
times, it has the same rotation every time, as the car is standing on the conveyor
belt.

HSV and RGB changes modify colors of the car and the belt. Brightness and
contrast changes simulate bad lightning conditions, that sometimes appear in the
original dataset.

Motion blur mimic the blur caused by movement or by the loss of camera focus.
The last used augmentation is optical distortion, which is a slight modification
of image geometry.
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3.3 Experiments

3.3.1 Histogram of Oriented Gradients and SVG
In this experiment, we are going to measure accuracy of hog features and svm
classifier. We conduct multiple experiments with various hog parameters.

Setup

The selected dataset for this is the easier Dataset21. For HOG we set as a constant
parameter ’multichannel’ which indicates, that we are working with color image,
hence we select the gradient for the pixel from the color channel where it is largest.
The parameter ’cells per block’ is also set as a constant. It describes the number
of cells over which we normalize the histogram.

On the other hand, multiple values for parameters ’orientations’ and ’pix-
els per cell’ are tested. The ’orientations’ parameter defines, how many bins does
histogram for one cell have. Parameter ’pixels per cell’ describes the size of one
cell in pixels.

The SVM variant used is LinearSVC from the scikit-learn library [30].

Results

The individual runs with tested parameters and results are in Table 3.1. To paint
a picture of memory size of features for a single image, one feature is represented
by float64 meaning 64bits per feature. Thus for example 100K features take
800kB of space.

The confusion matrix for the best run is displayed in Figure 3.5.

Orientations Pixels per cell Val acc Train time [s] Features
9 (4, 4) 0.542 558 + 812 331K
9 (8, 8) 0.643 165 + 378 73K
9 (16, 16) 0.706 64 + 137 16K
9 (24, 24) 0.697 47 + 52 5K
13 (4, 4) 0.539 550 + 922 450K
13 (8, 8) 0.649 172 + 377 105K
13 (16, 16) 0.704 75 + 161 23K
13 (24, 24) 0.744 47 + 56 7.5K
16 (4, 4) 0.537 567 + 802 553K
16 (8, 8) 0.666 171 + 352 130K
16 (16, 16) 0.712 69 + 149 28K
16 (24, 24) 0.718 56 + 66 9.2K

Table 3.1: Results of HOG with with multiple variations of parameters. Values
in column ’train time [s]’ consist of two values, time to generate HOG features
from images and time to train SVM. The column ’features’ describes the number
of features generated per image.
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Figure 3.5: Confusion matrix for HOG experiment with orientations = 13 and
pixels per cell = (24, 24).
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Discussion

The highest achieved validation accuracy is 74% which is probably too low for
practical use, but can serve as a baseline for further experiments.

From the results we can see, that accuracy is usually high with larger cells,
which also brings benefit of lower training time and less features per image. The
confusion matrix does seem to have more or less random misclassifications, we
can only point out low accuracy in classes ’10’, ’30’.

The training time is sufficient for practical use. The inference time grows
with the number of features and ranges between 1 ms and 7 ms, the time to
convert image to HOG features also grows with the number of features and ranges
between 20 ms for the smallest and best achieving runs and 200 ms for the runs
with around 500K features.

3.3.2 Unfreezing layers of EfficientNet
The goal of this experiment is to determine how many layers of EfficientNet
should we train and how many layers should we leave frozen to achieve optimal
results with transfer learning.

Setup

The selected dataset for this experiment is Dataset21.
The selected model is the smallest proposed model in original paper Efficient-

NetB0. Without a classification head, it has 237 layers that altogether contain
4M of parameters. The weights are pretrained on ImageNet dataset. For our
experiment, we have only added our own softmax layer suitable for our dataset.

The training was set for 50 epochs because the models seem to converge
without problems for this setting.

Results

Individual runs with number of unfrozen layers and achieved validation accuracy
are in Table 3.2 and plots of train and validation accuracy throughout the runs
are in Figure 3.6.

Unfrozen layers Trainable params Max val acc Train time [s]
0 (only head) 0 0.948 500

1 0 0.954 593
2 2.5K 0.946 512
3 412.2K 0.961 529
5 781.4K 0.984 551
10 893.2K 0.984 529
25 1.5M 0.996 605
50 2.5M 0.996 656
100 3.5M 0.996 843
237 4M 0.995 1932

Table 3.2: Results of runs with various number of unfrozen layers.
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Discussion

The results suggest that we can train an almost optimal model by unfreezing
twenty five or more layers. Also from this number of layers, we can see nice
convergence of training and validation accuracy curves. In terms of training
time, most of the runs take less than 11 minutes and we can see slight increase
to 14 minutes with 100 unfrozen layers and to 32 minutes with the whole model
unfrozen.

The inference time around 60 ms per image which is promising for our appli-
cation.

3.3.3 EfficientNet on Dataset31
In this experiment, we test EfficientNet on Dataset31 to see its performance on
higher class count and how it deals with a low number of samples in some classes.

Setup

The training is performed with 25 unfrozen layers for 50 epochs. Furthermore
we use class weights for training the model in order to compensate imbalanced
classes. The weights are computed by following formula:

class weight = 100
number of samples in class

It will assign weight of 1 to classes with full number of 100 training samples
and higher weight to classes with less samples. The samples with higher weight
influence model training more a it should lead to better generalization.

Results

Maximum validation accuracy for this run is 0.973. The training plot is in Fig-
ure 3.7 and confusion matrix in Figure 3.8.

Discussion

Validation accuracy is worse than in the case of Dataset21. From the confusion
matrix is clear that the most of misclassifications happen on the classes with low
sample counts.

3.3.4 Augmentation and EfficientNet
In this experiment we try to improve accuracy of the EfficientNet model on the
Dataset31 by adding augmented data to the training.

Setup

The training is performed with 25 unfrozen layers on Dataset31 for 50 epochs.
To each class we add 50 augmented images. Those images are generated by ran-
domly selecting image from class a running augmentation on it. The class weights
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(a) 0 unfrozen layers (b) 1 unfrozen layers

(c) 2 unfrozen layers (d) 3 unfrozen layers

(e) 5 unfrozen layers (f) 10 unfrozen layers

(g) 25 unfrozen layers (h) 50 unfrozen layers
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(i) 100 unfrozen layers (j) 237 unfrozen layers

Figure 3.6: Train plots for various numbers of unfrozen layers - x-axis is number
of epochs, y-axis is models accuracy, where blue line represents training accuracy
and orange line validation accuracy. We can observe that the most stable training
has models with unfrozen 5, 10 and 25 layers.

Figure 3.7: Training plot for EfficientNet and Dataset31 experiment
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Figure 3.8: Confusion matrix for EfficientNet and Dataset31 experiment.
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formula is similar as in previous experiment and accounts for those additional im-
ages:

class weight = 100 + 50
number of samples in class + 50

Results

Maximum validation accuracy for this run is 0.975. The training plot is in Fig-
ure 3.9.

Figure 3.9: Training plot for EfficientNet and Dataset31 with augmentation ex-
periment

Discussion

The augmentation does not seem to substantially improve validation accuracy of
the model.

3.3.5 EfficientNet Evaluation on Test Set
The last experiment presents accuracy of selected model on the test set.

Setup

For this experiment, we use EfficientNet with 25 unfrozen layers trained for 50
epochs. There will be no data augmentation because it did not seem to provide
any advantage in the previous experiment. The performance will be tested on
both datasets.

Results

Maximum test accuracy on Dataset21 is 0.986 and for dataset 31 is 0.973. For
Dataset31 can be also mentioned balanced accuracy that equals 0.949. The bal-
anced accuracy we are using is provided by scikit-learn library and is computed
as ”average of recall obtained on each class” and plays the same role as class
weights during training, giving all classes the same importance by promoting the
effect of samples from classes with small training set.
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3.3.6 Discussion
The combination of HOG features and SVM classifier provides a good baseline
model, although it does not reach results expected for practical use. It would
be definitely interesting to follow this path and add another feature extraction
method or try more classifiers. It also has great training and inference speed
regarding the fact that it utilizes only CPU unit.

The EfficientNet delivers almost optimal accuracy and we will use it further in
this work. The interesting fact is that the model works pretty good for Dataset31.
Also we expected augmentation to help with problem of low number of training
samples, but it does not seem to have that effect.
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4. Rim Size Estimation
This chapter is focused on estimation of rim size. First, we introduce necessary
background for this task. Then we describe considered methods and choose one
of them, for which we later prepare the data and perform experiments.

4.1 Background
We start this section once again by looking at the properties of our data, mostly in
terms of sizes and angles of the objects. Then we describe technical properties and
assumptions about rim sizes and in the end we present an approach to measure
them.

The first note about data properties is about the cameras. Our cameras were
not specially calibrated and they have slight difference in tilt and also in position
in which they are mounted.

Furthermore, we have no guarantee about the exact position of the car on the
conveyor belt. We only know that its somewhere in the middle of the belt, which
can mean differences in up to lower tens of centimeters (rough estimate from the
data). Another thing about the car wheels is that we cannot expect the wheel to
be exactly perpendicular to the camera because there can be a slight rotation in
the car position on the belt or the wheels can be slightly turned to one side. All
those properties mean that we cannot base our approach on the specific distances
from the camera to the objects or expect objects in specific angles.

In terms of the rim sizes, we do not we do not have the true rim sizes available
in our data. As far as we know [45], Škoda Auto rims have diameters in inches in
integer values, usually from 15” up to 20”. This diameter defines the diameter of
the area that is directly under the tire. Unfortunately, this is not the same diam-
eter that we get by naively measuring the rim from the outside. See Figure 4.1.
The cause is a part of the rim called fringe. Its purpose is to help to keep the
tire in place. The outer diameter of the rim is then the rim diameter plus fringe
on both sides.

The fringes can differ in shapes and sizes [46] and it is described in rim spec-
ification. Taking into consideration the lack of data about rim diameters and
properties of the fringe, we decided not to follow the idea to determine the exact
rim diameter and we focus our attention more on the relative comparison of sizes
of rims on a single car.

To have at least some estimation of the rim diameter, we can use a different
kind of object in the image whose exact size we know. Luckily, one of these
objects lies in the center of the wheel and it is the pitch circle defined by the
wheel bolts. Its diameter was already mentioned in the first chapter as PCD. To
our best knowledge [45], all new Škoda Auto cars, especially models Octavia and
Karoq that we have in our data, have wheels mounter by five bolts with pitch
circle diameter of 112 mm. This knowledge is used as a base for our methods.

Lastly, we expected that the circumference of the rim in our data would be
a nearly perfect circle. This expectation holds when the rim is in the middle
of the frame, but as it approaches on of the sides, it is skewed into ellipse. See
visualization in Figure 4.2.
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Figure 4.1: Cross section of the rim showing the flange - see the specification
of the rim diameter and the flange. (Image taken from ae101.tappsville.com
website [12])

Figure 4.2: Frame showing elliptical shape of the rim near the edge of the frame
- the green circle is detection of the rim by Hough transform for circles.
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4.2 Considered Methods
The approach described above leads to two separate challenges that need to be
solved. To compute the pitch circle diameter, the wheel bolts need to be identified.
To compute the diameter of the rim, we need to identify the contour of the rim.

For identification of the wheel bolts, we can refer to the second chapter, where
segmentation and detection methods are presented. From the blob of pixels of
a bolt or its bounding box, we can compute its geometric center and use it for
estimation of PCD.

To identify contour of the rim, we can also use segmentation techniques. If
we had reliable segmentation method for the rim, the contour extraction would
be straightforward. However this does not apply for the bounding box detection
techniques, as the bounding box would not define the contour of the rim.

Due to the time requirements of a proper development of the segmentation
pipeline and labeling of data, we move the segmentation approach to future work
and focus on more simple approach that combines multiple techniques.

4.2.1 Selected approach
First we train detection neural network to detect bolts and the rim. We use
YOLOv5 (specifically YOLOv5s model) as we already have training and inference
scripts prepared from the second chapter.

By detecting bolts, we can perform the procedure described previously, where
we take centers of those bounding boxes and use them for PCD estimation. Be-
cause the rim can get ellipse shape near the edges, the same should be expected
to happen to the pitch circle. To avoid errors that would arise by forcing circular
shape on it, we fit the bolts as an ellipse. To perform the ellipse fit, we use algo-
rithm proposed by Halir and Flusser [18] and implemented in scikit-learn library.
The result of this procedure is shown in Figure 4.3a.

The detection of bounding box of the rim can help us remove parts of the
image that are not relevant for the rim contour extraction. We simply crop the
image to the rectangle defined by the bounding box, which leaves us with image
of a rim and small parts of the tire. See image of this type of crop in Figure 4.3b.

To extract contour, we choose to threshold the image and extract the con-
tour. To obtain the thresholded image, the crop is converted to grayscale,
blurred to smooth the edges and then converted to binary image based on Otsu’s
method [29]. The result of thresholding is presented in Figure 4.3c.

Unfortunately, the contour extraction is not a simple procedure because some
rims, especially the dark ones, do not generate stable contour on the circumference
of the rim. See example in Figure 4.3d. The contours seems to be most stable
near the middle of the edges. This lead us to the custom procedure of contour
estimation.

To obtain the most stable sample points of the contour, we cast five vertical
or horizontal rays from the middle of each edge. The spacing between individual
rays is set to ten percent of the size of the edge. When the ray hits white pixel
we add that location as sample point and stop.

Finally, we use the sampled points to fit an ellipse that we pronounce the
contour of the rim. Visualization of the entire procedure using rays is presented
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(a) Ellipse fit to the bolts. (b) Image cropped to rim box.

(c) Result of Otsu thresholding. (d) Failure to obtain contour.

Figure 4.3: Pitch circle ellipse fit and stages of rim thresholding.
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(a) Visualization of sampling. (b) Ellipse fit

Figure 4.4: Visualization of rays sampling rim contour - the green rectangle is
the rim bounding box that defines the image on which we perform the contour
extraction procedure.

in Figure 4.4.
The last challenge lies in comparison of ellipses representing pitch circle and

rim contour.
We can make following observation. Assume we have a circle in a three-

dimensional space. By looking at it from a position perpendicular to the plain
the circle lies in, we see its projection as a circle. After an arbitrary rotation of
the circle around its center, we will see it as an ellipse (except for edge case where
it becomes a single-dimensional shape). The important property of the ellipse is
that its major axis size will be equal to the diameter of the circle.

With this knowledge, we can now imagine two circles of different sizes in the
same plane in three-dimensional space that share the center. The smaller one
will represent pitch circle and the larger one rim contour. Based on the previous
observation, by rotating those two circles together, we should always get axis
aligned ellipses (both major axes lie on a single line, the same happens for minor
axes) and the ratio among the major axes is equal to the ratio of the diameters
among the circles.

In simple terms, we should get almost correct ratio between PCD and outer
rim diameter by computing ratio between major axes of the ellipses we have
extracted. This is a slight simplification of the real scenario because the outer
rim contour is not in the same plane as the wheel bolts. The wheel bolts are
usually deeper in the wheel.

4.3 Data Preparation
As the base for the data preparation in this chapter, we use Dataset31 from the
previous chapter. This dataset already contains crops of the wheels with samples
for all the classes. Moreover, the data are split into non-overlapping training,
validation and test sets.

We generate 400 training samples by applying random selection from the
whole training set of Dataset31. We obtain 100 validation and 100 test samples

41



by applying the same methodology on their respective sets from Dataset31.
We labeled the wheel bolts and the entire rims with bounding boxes. The

labelling was done using CVAT tool the same way as in the second chapter.

4.4 Experiments
As a first experiment the YOLO detection network is trained for wheel bolts and
rim. The second experiment is focused on the accuracy of capabilities of our
custom contour extraction method.

4.4.1 Bolts and Rim Detection
Setup

The selected model is YOLOv5s. We run the training with default parameters
selected by the authors of the model. The details are described in attachment A.1.
The training was set for 100 epochs.

Results

The training took 10 minutes. The results of individual classes are in Table 4.1.

Class Labels Precision Recall mAP@.5 mAP@.5:.95
Bolt 475 1 0.998 0.995 0.651
Rim 95 0.984 1 0.995 0.993
All 570 0.992 0.999 0.995 0.822

Table 4.1: Results of YOLOv5s for rim and bolts detection on validation data

Both rims and bolts were detected in almost all cases. The metric mAP@.5:.95
for the bolts class shows that the network has problems with predicting the bound-
ing box precisely. This could potentially introduce errors that will propagate to
the pitch circle ellipse fit and rim size estimation.

4.4.2 Rim Contour Extraction
Setup

To test our algorithm for contour extraction, we take the validation data of the
dataset and see its behavior on the samples where rims have their whole circum-
ference in the image.

Results

Out of 100 validation images, 69 images have the rim circumference fully visible.
The 63 rims have a good fit of ellipse to the contour. The remaining 6 predictions
were faulty. All of them were of a darker color, which means that the thresholding
algorithms did not separate rim and the tire well. This resulted in rays sampling
different points than the contour which disrupted the correct fit of the ellipse.
See examples of good and bad fit in Figure 4.5.
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(a) Example of good ellipse fit. (b) Example of good ellipse fit.

(c) Example of bad ellipse fit. (d) Example of bad ellipse fit.

Figure 4.5: Examples of good and bad fit of rim contour ellipse.

43



4.4.3 Discussion
The detection of the rims works well, but in case of wheel bolts we can see
problems with prediction of the correct location. The rim contour extraction
algorithm performs good on brighter rims but makes serious mistakes on the
darker ones.

The topic estimation of rim diameter by comparison of both ellipses is left for
the prototype chapter, where we can observe the values on multiple frames in the
row.
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5. Prototype
This chapter combines results of the previous chapters to produce a working
prototype of a system that tracks rims and checks, whether all rims on a single
car are of the same type and size. First we shortly discuss object tracking and
introduce a simple tracking heuristic that we use. Then we show, how individual
models are connected in order to work as a system. At last, we evaluate its
performance.

5.1 Object Tracking
The end objective of the thesis is to verify, whether all rims on a car match. To
do that, we need to be able to keep track of individual instances of cars as they
move through the scene, as well as track individual wheels and assign them to a
specific car. We refer to this task as object tracking. Its goal is to track individual
objects as they move around in the video.

To illustrate the challenges that the object tracking algorithm has to face, we
will describe the four step methodology that is used in SORT algorithm [6]. Both
SORT and its successor DeepSORT [50] are popular algorithms used in object
tracking.

The first challenge is object detection. It is described in detail in the second
chapter.

The next step is estimation. It models the motion of the object and together
with its current position predicts its location in the subsequent frame(s). The
commonly used model for modelling motion is Kalman filter [24]. The benefit of
modelling motion is that in case of a short occlusion, we have a good estimate of
the tracked object’s location, so there is chance for the tracking recovery.

The third challenge is data association. When we arrive at a frame, we have
estimations of object locations from previous frame and object detections from
the current frame. To update object locations for the current frame, we can for
example take the estimation and check overlap (intersection over union) with the
closest detection. If it is higher than some threshold, we update the motion model
and the location of the object.

This can have two problems. The first one is that if we do this approach
greedily, some estimates of objects will end up not having feasible detection near
them. This can be improved by assigning estimates to detections in order to
maximize sum of overlaps. The second problem is identity switch, for example
when two running dogs cross paths and one dog occludes the other, a tracking
algorithm can accidentally swap their ids, which ruins their tracking further on.
This can be improved by using a better metric for estimation and detection
assignment. For example we can take into consideration similarity of object
features between object in the past and in the current frame.

The last step is to solve object creation and destruction, which means defining
conditions, when an unassigned detection becomes an object and when to stop
tracking of an object.
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5.1.1 Specifics of Our Data
The object tracking is usually presented on a single camera running at fps rate
that resemble continuous movement of objects. Our data run at 1 frame per
second, which is low, but we have large objects in the frame, so it is still sufficient
for data assignment via intersection over union.

Another property of our data are occlusion caused by working staff. It is
usually only for one or two frames, but there are also cases, when the wheel is
not visible in the scene at all as it passes by.

Because we work with 2 cameras running in parallel recording the same car, we
need to maintain a representation of a car present in both cameras. Furthermore
we need to deal with slight difference in size and position of the same car in
individual cameras because they are not mounted in exactly opposite spots and
one of them is slightly tilted. These differences are displayed in Figure 5.1.

Figure 5.1: Custom tracking algorithm - see difference in position and size of a
car and its wheel. The camera A in the top and camera B in the bottom.
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5.1.2 Implementation
Because we have a system with two cameras and an already prepared object
detection model, we have decided to implement a simple tracking algorithm our-
selves. The already existing algorithms would have higher accuracy, but would
also come with higher cost in implementation or integration time, so we leave
them for the future work.

Our tracking approach has two preprocessing steps. The first one is that
when two boxes of the same class overlap, we keep only the bigger one. From
the nature of our data, we can be sure that this approach is correct and will rule
out duplicate detections of the same object. We implement this feature because
we have observed case when YOLO generated two bounding boxes for a single
wheel. The next preprocessing step is to ignore bounding boxes, that are too
close to the left or right edge of the image. For example near the left edge, we
ignore all bounding boxes, whose right side is lower than 15 percent of the image.
This should help us with inconsistent detections near the edges, so we take into
consideration objects only when they are recognizable.

The car tracking is performed only on camera A and this information is used
also for camera B. This is acceptable because the differences in horizontal coordi-
nates of a car are not big. The car tracking is implemented in a simple way. We
always track only a single car, the data association is done by intersection over
union of bounding box in a current and a previous frame. If we lose tracking of
a car, we wait for a few frames and then cancel the tracking. When no car is
being tracked and bounding boxes appear in the frame once again, we take the
leftmost car bounding box and instantiate it as a newly tracked car.

The wheels are tracked in the same way as the car, the only difference is the
class of the bounding boxes that we are focused at. The tracked wheel is assigned
to the currently tracked car.

For the visual output of our tracking algorithm, see Figure 5.1.

5.2 Prototype structure
The prototype structure and the flow of the data almost completely follows the
order in which they were introduced in the thesis. See Figure 5.2 for schema of
the most important modules and data they pass to each other.

At first new frames from the cameras arrive. Let us denote frame a the frame
from camera A and frame b the frame from camera B. The frame b is flipped
horizontally due to the properties of the tracking algorithm and it also looks
more coherent in the user interface. In the following modules, we process the
frame a and frame b the same way and the difference is again important only for
the tracking algorithm in the end.

The journey of the frame begins with the object detection model from the
second chapter. The model detects the car bounding box that is sent directly
to the tracking algorithm and the wheel bounding box that is sent for further
processing.

By cropping the frame to the rectangle defined by bounding box, we get an
image of the wheel. The wheel image is first passed to the rim classifier from the
third chapter that delivers the predicted class to the tracking algorithm.
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Figure 5.2: Schema of the data flow through the main prototype modules. The
modules have gray background. The word ’bbox’ is an abbreviation for bounding
box.
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The wheel image is also sent to the rim and bolts detection model developed
in the fourth chapter. The detected bolts bounding boxes go to the ellipse fit
algorithm that provides us with the estimate of the pitch circle ellipse. The
detected rim bounding box is used for cropping the image further.

The rim image is fed to our rim contour extraction algorithm that extracts
samples points from the contour and performs an ellipse fit. The result is estimate
of rim contour ellipse. Having both pitch circle ellipse estimate and rim contour
ellipse estimate, we can compute the rim diameter and pass it to the tracking
algorithm.

The tracking algorithm is the last module of the pipeline. First it updates
known position for the car and the wheels. Then it takes into consideration
predicted rim class and estimated rim size.

Because we see every wheel in about ten frames, a method to aggregate results
of rim class and rim size for a single wheel is needed. For rim class, we decided
to do simple voting, where we consider the class of the rim to be the most often
predicted class, which seems to be the natural approach. For the wheel size, we
aggregate results using an average. The median or weighted average would be
also reasonable. For example the weight for the size estimation could be highest
when the wheel is near the middle of the frame because we can expect most
precise estimations there.

5.3 Results
The results we describe are based on the observations of the prototype behavior
on multiple videos from the data. See Figure 5.3 for the prototype user interface
we use.

The detection of the car and wheels works as good as can be expected. In rare
cases a weird stretch of the car bounding box can be seen when somebody steps in
front of the camera and covers large parts of the frame. The wheel classification
did not make any mistakes during our observation. Again, in rare cases we have
seen that the number of votes for the class was lower than the maximum possible
amount, but it was not enough to damage the overall class prediction.

On the other hand the performance of the tracking algorithm and size estima-
tion was not optimal. The tracking algorithm works well in clear environment,
but when a person occludes the car in a specific place for more than a few frames,
the algorithm can prematurely end tracking of the car and start tracking the same
car as a new one.

The size estimation also has issues that were already mentioned in Chapter
4. It is poor estimation of ellipses when the rim is dark that leads to nonsensical
estimates of the rim diameter. Estimation on the rims with bright surface per-
forms much better. If we look at the averages of size estimates on individual rims
on a single car, they seem to be quite close to each other. We often see that the
difference between the average size among the four wheels is less than 0.3 inches,
which is surprisingly good considering the errors introduced in bolts detection
and other disruptive influences.

The average processing time of the whole pipeline for a single input (two
frames, one from each camera) when it is under load, meaning there is car and
wheels in both frames, is about 0.4 seconds. When the scene is empty, it is
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Figure 5.3: User interface of the prototype - on the left side there is Frame a
and Frame b, next to them are visualizations of ellipse estimations and predicted
classes. The texts under heading ’Camera A/B’ sum up information about size
estimation for the current frame. The texts under headings ’Wheel classes/sizes’
sum up aggregated knowledge we have about the classes and sizes of the rims on
the currently tracked car.

about 0.15 seconds. This is very promising because in spite of that we have done
almost no speed or memory optimizations, the prototype is still able to process
the inputs in real-time.
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Conclusion
The goal of the thesis was to make a prototype of a real-time system that is able
to validate whether all car rims match in type and size.

The first chapter introduced the topic of car manufacture and presented the
data screening conditions. Furthermore were described the challenging properties
of the data.

The second chapter was focused on the detection of a car and wheels. We men-
tioned related work, prepared the data and trained two fairly successful models:
Hough transform and YOLOv5 detection network.

The third chapter was dedicated to the task of wheel classification based
on the differences in shape and color. We prepared the data and tested two
classification methods: a combination of HOG features and SVM classifier, and
EfficientNet classification network. The former did not reach practical results,
but had a potential to be improved. The latter reached almost optimal accuracy
when it was supplied with enough data for each class.

The fourth chapter discussed facts we knew about the rim size and we have
proposed a custom procedure that is able to estimate pitch circle and rim contour.
Our procedure worked quite reliably with brighter rims and failed in case of the
darker ones. This problem could have been solved by introducing segmentation
neural network instead of simple thresholding. The comparison of sizes of brighter
rims on a single car seemed to give stable results, but for a practical use it needs
tuned to be tuned more accurately.

The fifth chapter used previously developed methods to build a functional
prototype. First, we took a step aside and introduced a simple custom heuristic
for car and wheel tracking. Then the models were connected into a single pipeline
that detects wheels, measures and classifies them, and also sums up these pieces
of information for the whole car. Although tracking heuristic and rim estimation
needs to be improved for practical use, the final system works really well, processes
data in real-time and meets all the objectives that were specified in the beginning.

During the making of the thesis, we have collected multiple ideas for the future
work that would improve both the data preparation and the final system.

5.4 Future work
Unknown rim class - premise of this thesis is that users of the system are able
to obtain images of all classes of rims that the system can encounter. This means
that the system should never see a class of a rim that is missing in the training
data. In case this would happen, the system behavior would not be well defined
and it would likely predict the most similar class.

The system can be improved to recognize an unknown class. This task is
called open set recognition. A simple way to implement it would be a threshold
on probability of a predicted class that would distinguish between confident pre-
diction and unknown class. An inspiration for a more accurate method can be
work of Bendale and Boult [5] which proposes a new layer of neural network that
support open set recognition, or survey by Geng et al. [14] focused on the topic
of open set recognition as a whole.
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Automatization of labeling - since labeling of data can be a time and
attention demanding task, we suggest to use semi-automatic approaches for it,
where user’s action are used more for control of the correctness of the label rather
than its creation. One example is object detection in CVAT tool. User can either
use integrated YOLOv4 network to label the image and then modify labels, or
use models that can predict contour of a selected object.

Second example would be in classification. One idea is that user would select
a representative picture of a class and an algorithm would extract similar images
from a dataset. Second idea is an algorithm that would partition dataset into
several groups based on similarity by itself. We have performed a small experi-
ment during the development of this thesis where image features were represented
by the latent space of an autoencoder [3]. Images were then clustered into sev-
eral groups using Gaussian mixture model. This approach yielded some results,
but they were not good enough for practical use. A possible improvement may
use different features, different autoencoder such as disentangled autoencoder [3],
different clustering algorithm or different pipeline at all.

Improvement of tracking - there is a lot of room for improvement because
we have used a custom simple algorithm. Ideally, a widely respected algorithm
such as DeepSORT should be integrated instead. Furthermore, one needs to
think through what to do in cases when the system arrives into an inconsistent
state. For example the system could detect only three wheels, or there could be
an occlusion and it could split one real wheel into two tracked entities, which
would end up in three detected wheels on one side of the car, etc.
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A. Attachment

A.1 Electronic Attachment
The electronic attachment contains code and data used in the thesis. The docu-
mentation files that further describe the structure and use are:

1. User Documentation

(a) Introduces the usage of the prototype.
(b) Located in ./docs/User documentation.pdf

2. Technical Documentation

(a) Describes the whole project structure, installation and data processing
scripts.

(b) Located in ./docs/Technical documentation.pdf

3. Experiments Documentation

(a) Points both to scripts that were used for experiments and the data
available for individual runs presented in the thesis.

(b) Located in ./docs/Experiments documentation.pdf
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