Variational Methods in Image Processing

ÚTIA AV ČR

æ

Outline

Introduction

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

< < >> < </>

э

æ

Outline

Introduction

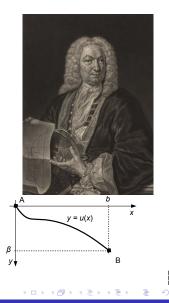
- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

The Brachistochrone Problem:

"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696

The Brachistochrone Problem:

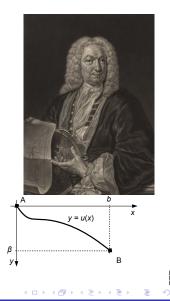
"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696



The Brachistochrone Problem:

"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696

In one year Newton, Johann and Jacob Bernoulli, Leibniz, and de L'Hôpital came with the solution.



History

The problem was generalized and an analytic method was given by Euler (1744) and Lagrange (1760).

• Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals

- Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals
- Calculus of Variations solves

$$\min_{u} F(u(x)),$$

where $u \in X$, $F : X \rightarrow R$, $X \dots$ Banach space

- Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals
- Calculus of Variations solves

$$\min_{u} F(u(x)),$$

where $u \in X$,

- $F: X \rightarrow R$,
- X ... Banach space
- solution by means of Euler-Lagrange (E-L) equation

Calculus of Variations

Integral functionals

$$F(u) = \int_{\Omega} f(x, u(x), \nabla u(x)) dx$$

Example

- $x \in \mathbb{R}^2$... space of coordinates $[x_1, x_2]$
- Ω . . . image support
- $u(x): \mathbb{R}^2 \to \mathbb{R} \dots$ grayscale image
- $\nabla u(x) \dots$ image gradient $[u_{x_1}, u_{x_2}]$

Variational Methods

・ロト ・回ト ・ヨト ・

프 🕨 🛛 프

Image Registration

given a set of CP pairs $[x_i, y_i] \leftrightarrow [\tilde{x}_i, \tilde{y}_i]$ find $\tilde{x} = f(x, y), \tilde{y} = g(x, y)$

$$F(f) = \sum_{i} (\tilde{x}_{i} - f(x_{i}, y_{i}))^{2} + \lambda \int \int f_{xx}^{2} + 2f_{xy}^{2} + f_{yy}^{2} dx dy$$

and a similar equation for g(x, y)

• Image Registration

ヘロト 人間 とくほとくほとう

2

Image Registration

Image Reconstruction

given an image acquisition model $H(\cdot)$ and measurement g find the original image u

$${\sf F}(u)=\int ({\sf H}(u)-g)^2dx+\lambda\int |
abla u|^2$$

Image Registration

• Image Reconstruction

Variational Methods

Image Segmentation

find a piece-wise constant representation u of an image g

$$F(u, K) = \int_{\Omega-K} (u-g)^2 dx + lpha \int_{\Omega-K} |
abla u|^2 dx + eta \int_K ds$$

Image Segmentation

Variational Methods

Image Segmentation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🕨 🛛 프

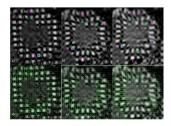
• Motion Estimation find velocity field $v(x) \equiv [v_1(x), v_2(x)]$ in an image sequence u(x, t)

$$F(\mathbf{v}) = \int |\mathbf{v} \cdot \nabla \mathbf{u} + u_t| d\mathbf{x} + \alpha \sum_j \int |\nabla \mathbf{v}_j| d\mathbf{x} + \beta \int c(\nabla u) |\mathbf{v}|^2 d\mathbf{x}$$

Image Segmentation

・ロン ・四 と ・ ヨ と ・ ヨ と …

Motion Estimation



æ

Variational Methods

Image classification

Variational Methods

- Image classification
- and many more

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

문▶ 문

From the differential calculus follows that

$$\left. \frac{d}{d\varepsilon} g(x + \varepsilon \nu) \right|_{\varepsilon = 0} = 0$$

$$\left. rac{d}{darepsilon} g(x+arepsilon
u)
ight|_{arepsilon=0} = 0 \quad = \quad \langle
abla g(x),
u
angle$$

$$\left. rac{d}{darepsilon} g(x+arepsilon
u)
ight|_{arepsilon=0} = 0 \quad = \quad \langle
abla g(x),
u
angle \quad \Leftrightarrow \quad
abla g(x) = 0$$

ъ

$$\left. rac{d}{darepsilon} g(x+arepsilon
u)
ight|_{arepsilon=0} = 0 \quad = \quad \langle
abla g(x),
u
angle \quad \Leftrightarrow \quad
abla g(x) = 0$$

in 1-D ($g: R \rightarrow R$) we get the classical condition

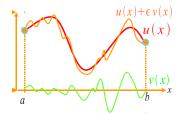
$$g'(x)=0$$

э

Motivation E-L PDE

Variation of Functional

$$F(u) = \int_a^b f(x, u, u') dx$$



<ロト <回 > < 注 > < 注 > 、

æ

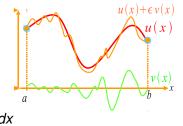
Motivation E-L PDE

Variation of Functional

$$F(u) = \int_a^b f(x, u, u') dx$$

if u is extremum of F then from differential calculus follows

$$\frac{d}{d\varepsilon}F(u+\varepsilon v)\Big|_{\varepsilon=0} = 0 \quad \forall v$$
$$F(u+\varepsilon v) = \int_{a}^{b} f(x, u+\varepsilon v, u'+\varepsilon v') dv$$



æ

Partial derivatives

Example

$$f(x, u) = xu$$
$$\frac{\partial f}{\partial x} = u$$
$$\frac{df}{dx} = u$$

ヘロト 人間 とくほとくほとう

Partial derivatives

Example

$$f(x, u) = xu = xu(x) = x\sin x$$

$$\frac{\partial f}{\partial x} = u = \sin x$$

but
$$\frac{df}{dx} = \text{ chain rule} = \sin x + x \cos x$$

Э.

ヘロト 人間 とくほとくほとう

$$\frac{d}{dx}f(u(x),v(x)) = \left(\frac{\partial}{\partial u}f(u,v)\right)\frac{du}{dx} + \left(\frac{\partial}{\partial v}f(u,v)\right)\frac{dv}{dx}$$

Variational Methods

$$\frac{d}{dx}f(u(x),v(x)) = \left(\frac{\partial}{\partial u}f(u,v)\right)\frac{du}{dx} + \left(\frac{\partial}{\partial v}f(u,v)\right)\frac{dv}{dx}$$

Example

$$u(x) = x, v(x) = \sin x, f = uv = x \sin x$$
$$\frac{d}{dx}f(u, v) = v(x)\mathbf{1} + u(x)\cos x = \sin x + x\cos x$$

ヘロト 人間 とくほとくほとう

₹.

$$\frac{d}{dx}f(u(x),v(x)) = \left(\frac{\partial}{\partial u}f(u,v)\right)\frac{du}{dx} + \left(\frac{\partial}{\partial v}f(u,v)\right)\frac{dv}{dx}$$

Example

$$u(x) = x, v(x) = \sin x, f = uv = x \sin x$$
$$\frac{d}{dx}f(u, v) = \frac{v(x)}{1} + u(x)\cos x = \sin x + x \cos x$$

ヘロト 人間 とくほとくほとう

₹.

$$\frac{d}{dx}f(u(x),v(x)) = \left(\frac{\partial}{\partial u}f(u,v)\right)\frac{du}{dx} + \left(\frac{\partial}{\partial v}f(u,v)\right)\frac{dv}{dx}$$

Example

$$u(x) = x, v(x) = \sin x, f = uv = x \sin x$$
$$\frac{d}{dx}f(u, v) = v(x)\mathbf{1} + \frac{u(x)}{u(x)}\cos x = \sin x + x \cos x$$

ヘロト 人間 とくほとくほとう

₹.

$$\int_{a}^{b} uv' = uv \Big|_{a}^{b} - \int_{a}^{b} u'v$$

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_a^b f(x, u+\varepsilon v, u'+\varepsilon v')$$

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_{a}^{b}f(x,u+\varepsilon v,u'+\varepsilon v')$$
$$= \int_{a}^{b}\frac{\partial f}{\partial u}v + \frac{\partial f}{\partial u'}v'$$

chain rule

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_{a}^{b}f(x,u+\varepsilon v,u'+\varepsilon v')$$
$$= \int_{a}^{b}\frac{\partial f}{\partial u}v + \frac{\partial f}{\partial u'}v' \qquad \text{chain rule}$$
$$= \int_{a}^{b}\frac{\partial f}{\partial u}v - \int_{a}^{b}\frac{d}{\partial x}\frac{\partial f}{\partial u'}v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} \qquad \text{per partes}$$

Variational Methods

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_{a}^{b}f(x, u+\varepsilon v, u'+\varepsilon v')$$

$$= \int_{a}^{b}\frac{\partial f}{\partial u}v + \frac{\partial f}{\partial u'}v' \qquad \text{chain rule}$$

$$= \int_{a}^{b}\frac{\partial f}{\partial u}v - \int_{a}^{b}\frac{d}{dx}\frac{\partial f}{\partial u'}v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} \qquad \text{per partes}$$

$$= \int_{a}^{b}\left[\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u'}\right]v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} = 0$$

Variational Methods

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_{a}^{b}f(x, u+\varepsilon v, u'+\varepsilon v')$$

$$= \int_{a}^{b}\frac{\partial f}{\partial u}v + \frac{\partial f}{\partial u'}v' \qquad \text{chain rule}$$

$$= \int_{a}^{b}\frac{\partial f}{\partial u}v - \int_{a}^{b}\frac{d}{dx}\frac{\partial f}{\partial u'}v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} \qquad \text{per partes}$$

$$= \int_{a}^{b}\left[\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u'}\right]v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} = 0$$

to be equal to 0 for any v, $\left[\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u'}\right] = 0 \rightarrow \text{E-L equation}$

・ロト ・四ト ・ヨト ・ヨト

э

Derivation of E-L equation

$$\frac{d}{d\varepsilon}F(u+\varepsilon v) = \frac{d}{d\varepsilon}\int_{a}^{b}f(x, u+\varepsilon v, u'+\varepsilon v')$$

$$= \int_{a}^{b}\frac{\partial f}{\partial u}v + \frac{\partial f}{\partial u'}v' \qquad \text{chain rule}$$

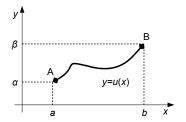
$$= \int_{a}^{b}\frac{\partial f}{\partial u}v - \int_{a}^{b}\frac{d}{dx}\frac{\partial f}{\partial u'}v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} \qquad \text{per partes}$$

$$= \int_{a}^{b}\left[\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u'}\right]v + \frac{\partial f}{\partial u'}v\Big|_{a}^{b} = 0$$

to be equal to 0, we need boundary conditions, e.g., fixed $u(a), u(b) \rightarrow v(a) = v(b) = 0$.

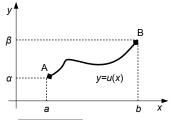
・ 同 ト ・ ヨ ト ・ ヨ ト …

э



æ

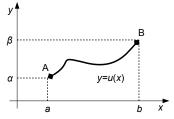
< ∃→



э

э

• We want to minimize $F(u(x)) = \int_a^b \sqrt{1 + u'(x)^2} dx$ with b.c. $u(a) = \alpha$, $u(b) = \beta$.

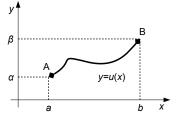


э

э

• We want to minimize $F(u(x)) = \int_a^b \sqrt{1 + u'(x)^2} dx$ with b.c. $u(a) = \alpha$, $u(b) = \beta$.

• E-L eq.:
$$-\frac{d}{dx}\frac{u'(x)}{\sqrt{1+u'(x)^2}} = 0$$



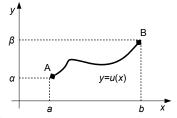
э

э

• We want to minimize $F(u(x)) = \int_a^b \sqrt{1 + u'(x)^2} dx$ with b.c. $u(a) = \alpha$, $u(b) = \beta$.

• E-L eq.:
$$-\frac{d}{dx}\frac{u'(x)}{\sqrt{1+u'(x)^2}} = 0 \Rightarrow u' = C\sqrt{1+u'^2}$$

Variational Methods

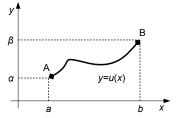


э

э

• We want to minimize $F(u(x)) = \int_a^b \sqrt{1 + u'(x)^2} dx$ with b.c. $u(a) = \alpha$, $u(b) = \beta$.

• E-L eq.:
$$-\frac{d}{dx}\frac{u'(x)}{\sqrt{1+u'(x)^2}} = 0 \Rightarrow u' = C\sqrt{1+u'^2} \Rightarrow u' = \text{constant}$$



- We want to minimize $F(u(x)) = \int_a^b \sqrt{1 + u'(x)^2} dx$ with b.c. $u(a) = \alpha$, $u(b) = \beta$.
- E-L eq.: $-\frac{d}{dx}\frac{u'(x)}{\sqrt{1+u'(x)^2}} = 0 \Rightarrow u' = C\sqrt{1+u'^2} \Rightarrow u' = \text{constant}$
- u(x) is a straight line between A and B.

If $u(x) : \mathbb{R}^N \to \mathbb{R}$ is extremum of $F(u) = \int_{\Omega} f(x, u, \nabla u) dx$, where $\nabla u \equiv [u_{x_1}, \dots, u_{x_N}]$ then

If $u(x) : \mathbb{R}^N \to \mathbb{R}$ is extremum of $F(u) = \int_{\Omega} f(x, u, \nabla u) dx$, where $\nabla u \equiv [u_{x_1}, \dots, u_{x_N}]$ then $F'(u) = \frac{\partial f}{\partial u}(x, u, \nabla u) - \sum_{i=1}^N \frac{d}{dx_i} \left(\frac{\partial f}{\partial u_{x_i}}(x, u, \nabla u) \right) = 0$,

which is the E-L equation.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Beltrami Identity

f(x, u, u')

$\frac{\partial f}{\partial u} - \frac{d}{dx} \left(\frac{\partial f}{\partial u'} \right) = 0$

Motivation E-L PDE

Variational Methods

Beltrami Identity

$$f(x, u, u')$$
$$\frac{df}{dx} = \frac{\partial f}{\partial u}u' + \frac{\partial f}{\partial u'}u'' + \frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial u} - \frac{d}{dx} \left(\frac{\partial f}{\partial u'} \right) = 0$$

<ロト <回 > < 注 > < 注 > 、

æ

Beltrami Identity

$$f(x, u, u')$$
$$\frac{df}{dx} = \frac{\partial f}{\partial u}u' + \frac{\partial f}{\partial u'}u'' + \frac{\partial f}{\partial x}$$
$$\frac{\partial f}{\partial u}u' = \frac{df}{dx} - \frac{\partial f}{\partial u'}u'' - \frac{\partial f}{\partial x}$$

$$\frac{\partial f}{\partial u} - \frac{d}{dx} \left(\frac{\partial f}{\partial u'} \right) = 0$$

$$u'\frac{\partial f}{\partial u} - u'\frac{d}{dx}\left(\frac{\partial f}{\partial u'}\right) = 0$$

<ロト <回 > < 注 > < 注 > 、

æ

Motivation E-L PDE

Beltrami Identity

$$f(x, u, u') \qquad \qquad \frac{\partial f}{\partial u} - \frac{d}{dx} \left(\frac{\partial f}{\partial u'}\right) = 0$$
$$\frac{df}{dx} = \frac{\partial f}{\partial u}u' + \frac{\partial f}{\partial u'}u'' + \frac{\partial f}{\partial x}$$
$$\frac{\partial f}{\partial u}u' = \frac{df}{dx} - \frac{\partial f}{\partial u'}u'' - \frac{\partial f}{\partial x} \qquad u'\frac{\partial f}{\partial u} - u'\frac{d}{dx}\left(\frac{\partial f}{\partial u'}\right) = 0$$
$$\frac{df}{dx} - \frac{\partial f}{\partial u'}u'' - \frac{\partial f}{\partial x} - u'\frac{d}{dx}\left(\frac{\partial f}{\partial u'}\right) = 0$$

Variational Methods

<ロト <回 > < 注 > < 注 > 、

æ

Motivation E-L PDE

Beltrami Identity

$$f(x, u, u') \qquad \qquad \frac{\partial f}{\partial u} - \frac{d}{dx} \left(\frac{\partial f}{\partial u'}\right) = 0$$
$$\frac{df}{dx} = \frac{\partial f}{\partial u}u' + \frac{\partial f}{\partial u'}u'' + \frac{\partial f}{\partial x}$$
$$\frac{\partial f}{\partial u}u' = \frac{df}{dx} - \frac{\partial f}{\partial u'}u'' - \frac{\partial f}{\partial x} \qquad u'\frac{\partial f}{\partial u} - u'\frac{d}{dx}\left(\frac{\partial f}{\partial u'}\right) = 0$$
$$\frac{df}{dx} - \frac{\partial f}{\partial u'}u'' - \frac{\partial f}{\partial x} - u'\frac{d}{dx}\left(\frac{\partial f}{\partial u'}\right) = 0$$
$$\frac{d}{dx}\left(f - u'\frac{\partial f}{\partial u'}\right) - \frac{\partial f}{\partial x} = 0$$

Variational Methods

<ロト <回 > < 注 > < 注 > 、

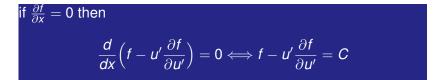
æ

Beltrami Identity

$$\frac{d}{dx}\left(f-u'\frac{\partial f}{\partial u'}\right)-\frac{\partial f}{\partial x}=0$$

Beltrami Identity

$$\frac{d}{dx}\left(f-u'\frac{\partial f}{\partial u'}\right)-\frac{\partial f}{\partial x}=0$$



Variational Methods

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Introduction Motiva

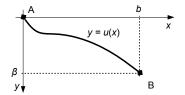
Motivation E-L PDE

Brachistochrone

F = ∫ *dt*, *minF* ... curve of the shortest time.

•
$$F = \int \frac{ds}{v} = \int_0^b \frac{\sqrt{1 + (u'(x))^2}}{v} dx$$

• $\frac{1}{2}mv^2 = mgy(x) \Rightarrow v = \sqrt{2gu(x)}$



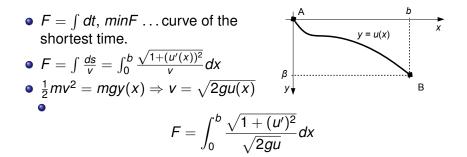
æ

→ < Ξ →</p>

Introduction Motiva

Motivation E-L PDE

Brachistochrone



イロト イポト イヨト イヨト

3

Brachistochrone

$$f(u, u') = \frac{\sqrt{1 + (u')^2}}{\sqrt{2gu}}$$

$$f(u, u') = \frac{\sqrt{1 + (u')^2}}{\sqrt{2gu}}$$
$$f - u' \frac{\partial f}{\partial u'} = C \quad \text{Beltrami identity}$$

$$f(u, u') = \frac{\sqrt{1 + (u')^2}}{\sqrt{2gu}}$$
$$f - u' \frac{\partial f}{\partial u'} = C \quad \text{Beltrami identity}$$

÷

Variational Methods

Ξ.

ヘロト 人間 とくほとくほとう

$$f(u, u') = \frac{\sqrt{1 + (u')^2}}{\sqrt{2gu}}$$
$$f - u' \frac{\partial f}{\partial u'} = C \quad \text{Beltrami identity}$$
$$\vdots$$
$$u(1 + (u')^2) = \frac{1}{2gC^2} = k$$

Variational Methods

ヘロト 人間 とくほとくほとう

Ξ.

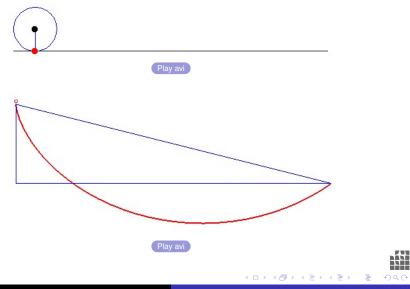
$$f(u, u') = \frac{\sqrt{1 + (u')^2}}{\sqrt{2gu}}$$
$$f - u' \frac{\partial f}{\partial u'} = C \quad \text{Beltrami identity}$$
$$\vdots$$
$$u(1 + (u')^2) = \frac{1}{2gC^2} = k$$

The solution y = u(x) is a cycloid:

$$x(\theta) = \frac{1}{2}k(\theta - \sin \theta), \quad y(\theta) = \frac{1}{2}k(1 - \cos \theta)$$

2

<ロ> <問> <問> < 回> < 回> < □> < □> <



Motivation E-L PDE

Boundary conditions

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

Motivation E-L PDE

Boundary conditions

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

Dirichlet b.c.

u is predefined at the boundary $\partial \Omega \rightarrow \nu(\partial \Omega) = 0$

< □ > < 同 > < 三 > <

э

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

Dirichlet b.c.

u is predefined at the boundary $\partial \Omega \rightarrow \nu(\partial \Omega) = 0$

Neumann b.c.

derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}$

< □ > < □ > < □ > < □ > <

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

Dirichlet b.c.

u is predefined at the boundary $\partial \Omega \rightarrow \nu(\partial \Omega) = 0$

Neumann b.c.

derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}$

Example

Consider
$$F(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 = \int_{\Omega} \frac{1}{2} (u_x^2 + u_y^2)$$

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

Dirichlet b.c.

u is predefined at the boundary $\partial \Omega \rightarrow \nu(\partial \Omega) = 0$

Neumann b.c.

derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}$

Example

Consider
$$F(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 = \int_{\Omega} \frac{1}{2} (u_x^2 + u_y^2)$$

 $\frac{\partial f}{\partial u_x} = u_x, \ \frac{\partial f}{\partial u_y} = u_y$

• using "per partes" on u(x, y), $\mathbf{n}(x, y) \equiv [n_1(x, y), n_2(x, y)]$ normal vector at the boundary $\partial \Omega$

$$\frac{\partial}{\partial \varepsilon} F(u + \varepsilon v) = \int (\cdot) dx dy + \int_{\partial \Omega} \left[\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 \right] v \, ds$$

• Dirichlet b.c.

u is predefined at the boundary $\partial \Omega \rightarrow \nu(\partial \Omega) = 0$

Neumann b.c.

derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}} = \mathbf{0}$

Example

Consider
$$F(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 = \int_{\Omega} \frac{1}{2} (u_x^2 + u_y^2)$$

 $\frac{\partial f}{\partial u_x} = u_x, \ \frac{\partial f}{\partial u_y} = u_y$
 $\frac{\partial f}{\partial u_x} n_1 + \frac{\partial f}{\partial u_y} n_2 = u_x n_1 + u_y n_2 = \frac{\partial u}{\partial \mathbf{n}} = 0$

E-L equation example

Smoothing functional:

$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx, \quad f = u_x^2 + u_y^2$$

E-L equation example

Smoothing functional:

$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx , \quad f = u_x^2 + u_y^2$$

• E-L equation:

$$F'(u) = -\Delta u = -u_{xx} - u_{yy}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

프 🖌 🛪 프 🕨

E-L equation example

Smoothing functional:

$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx, \quad f = u_x^2 + u_y^2$$

• E-L equation:

$$F'(u) = -\Delta u = -u_{xx} - u_{yy}$$

Laplace equation

< 🗇

프 > 프

• Total variation of an image function u(x,y):

$$F(u) = \int_{\Omega} |\nabla u| dx$$
, $f = \sqrt{u_x^2 + u_y^2}$

• Total variation of an image function u(x,y):

$$F(u) = \int_{\Omega} |\nabla u| dx, \quad f = \sqrt{u_x^2 + u_y^2}$$

• E-L equation:

∂f	d ∂f	d ∂f
∂u ¯	$\overline{dx} \overline{\partial u_x}$	$\overline{dy} \overline{\partial u_y}$

æ

• Total variation of an image function u(x,y):

$$F(u) = \int_{\Omega} |\nabla u| dx$$
, $f = \sqrt{u_x^2 + u_y^2}$

E-L equation:

۲

$$\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u_x} - \frac{d}{dy}\frac{\partial f}{\partial u_y}$$

$$-\frac{d}{dx}\frac{u_x}{\sqrt{u_x^2+u_y^2}}-\frac{d}{dy}\frac{u_y}{\sqrt{u_x^2+u_y^2}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$

æ

• Total variation of an image function u(x,y):

$$F(u) = \int_{\Omega} |\nabla u| dx$$
, $f = \sqrt{u_x^2 + u_y^2}$

E-L equation:

۲

$$\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u_x} - \frac{d}{dy}\frac{\partial f}{\partial u_y}$$

$$-\frac{d}{dx}\frac{u_x}{\sqrt{u_x^2+u_y^2}}-\frac{d}{dy}\frac{u_y}{\sqrt{u_x^2+u_y^2}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$

æ

• Total variation of an image function u(x,y):

$$F(u) = \int_{\Omega} |\nabla u| dx$$
, $f = \sqrt{u_x^2 + u_y^2}$

E-L equation:

۲

$$\frac{\partial f}{\partial u} - \frac{d}{dx}\frac{\partial f}{\partial u_x} - \frac{d}{dy}\frac{\partial f}{\partial u_y}$$

$$-\frac{d}{dx}\frac{u_x}{\sqrt{u_x^2+u_y^2}}-\frac{d}{dy}\frac{u_y}{\sqrt{u_x^2+u_y^2}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$

æ

Introduction

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

イロト イポト イヨト イヨト

2

Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

・ロト ・回ト ・ヨト ・ヨト

• Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

Must satisfy g'(x) = 0

• Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy g'(x) = 0
- Imagine, analytical solution is impossible.

• Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy $g'(\tilde{x}) = 0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

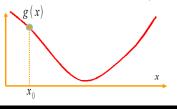
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}'(\mathbf{x}_k),$$

Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy g'(x) = 0
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}'(\mathbf{x}_k),$$

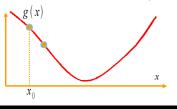


Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy g'(x) = 0
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}'(\mathbf{x}_k),$$

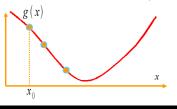


Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy g'(x) = 0
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}'(\mathbf{x}_k),$$

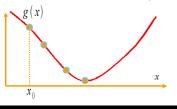


Classical optimization problem

$$g: R \to R, \, \tilde{x} = \min_{x} g(x)$$

- Must satisfy g'(x) = 0
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}'(\mathbf{x}_k),$$



• $\forall \alpha$

$$\frac{x_{k+1}-x_k}{\alpha}=-g'(x_k)\,,$$

• $\forall \alpha$

$$\frac{x_{k+1}-x_k}{\alpha}=-g'(x_k)\,,$$

• Define x(t) as a function of time such that $x(t_k) = x_k$ and $t_{k+1} = t_k + \alpha$

$$\frac{dx}{dt}(t_k) = \lim_{\alpha \to 0} \frac{x(t_k + \alpha) - x(t_k)}{\alpha} = \lim_{\alpha \to 0} \frac{x_{k+1} - x_k}{\alpha} = -g'(x_k)$$

<ロ> (四) (四) (三) (三) (三) (三)

• $\forall \alpha$

$$\frac{x_{k+1}-x_k}{\alpha}=-g'(x_k)\,,$$

• Define x(t) as a function of time such that $x(t_k) = x_k$ and $t_{k+1} = t_k + \alpha$

$$\frac{dx}{dt}(t_k) = \lim_{\alpha \to 0} \frac{x(t_k + \alpha) - x(t_k)}{\alpha} = \lim_{\alpha \to 0} \frac{x_{k+1} - x_k}{\alpha} = -g'(x_k)$$

• Finding the solution with the steepest-descent method is equivalent to solving P.D.E.:

$$\frac{dx}{dt} = -g'(x)$$

Variational Methods

ヘロト ヘアト ヘビト ヘビト

3

Variational problem

$$\tilde{u} = \min_{u} F(u(x))$$

Variational problem

$$\tilde{u} = \min_{u} F(u(x))$$

Must satisfy E-L equation

$$\Rightarrow F'(\tilde{u}) = 0$$

Variational problem

$$\tilde{u} = \min_{u} F(u(x))$$

Must satisfy E-L equation

$$\Rightarrow F'(\tilde{u}) = 0$$

Find the solution with the steepest-descent method

$$u_{k+1}=u_k-\alpha F'(u_k),$$

where α is the step length and must be determined

Variational problem

$$\tilde{u} = \min_{u} F(u(x))$$

Must satisfy E-L equation

$$\Rightarrow F'(\tilde{u}) = 0$$

Find the solution with the steepest-descent method

$$u_{k+1}=u_k-\alpha F'(u_k),$$

where α is the step length and must be determined • $\forall \alpha$

$$\frac{u_{k+1}-u_k}{\alpha}=-F'(u_k)\,,$$

• Make u also function of time, i.e., u(x, t)

Introduction

$$u_k(x)\equiv u(x,t_k)$$

Motivation E-L PDE

and $t_{k+1} = t_k + \alpha$

$$\lim_{\alpha\to 0}\frac{u_{k+1}-u_k}{\alpha}\equiv\frac{\partial u}{\partial t}(x,t_k)$$

• Make u also function of time, i.e., u(x, t)

Introduction

$$u_k(x)\equiv u(x,t_k)$$

Motivation E-L PDE

and $t_{k+1} = t_k + \alpha$

$$\lim_{\alpha\to 0}\frac{u_{k+1}-u_k}{\alpha}\equiv\frac{\partial u}{\partial t}(x,t_k)$$

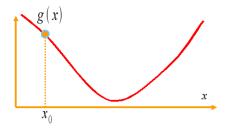
 Solving the variational problem with the steepest-descent method is equivalent to solving P.D.E.:

$$\frac{\partial u}{\partial t} = -F'(u)$$

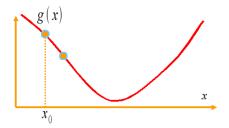
+boundary conditions.

ヘロン 人間 とくほ とくほ とう

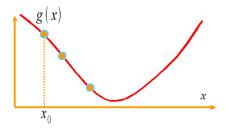
3



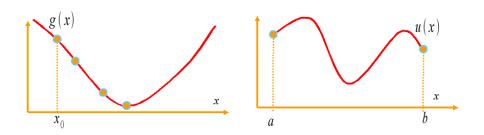
・ロ> < 個> < 注> < 注> < 注> < 注



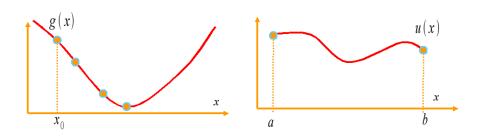
(ロ) (個) (主) (主) (主) (の)(()



(ロ) (個) (言) (言) 言) (の)

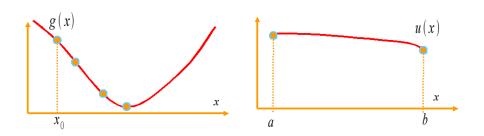


<ロト <回 > < 注 > < 注 > 、

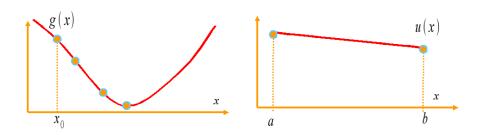


Variational Methods

ヘロト 人間 とくほとく ほとう



<ロト <回 > < 注 > < 注 > 、



Variational Methods

<ロト <回 > < 注 > < 注 > 、

Introduction

Motivation E-L PDE

Differential Calculus x Variational Calculus

	Differential Calculus	Variational Calculus
Problem Spec.	function	function of function = functional
Necess. Cond.	1st derivative = 0	1st variation = 0
Result	one number (or vector)	function

イロト イポト イヨト イヨト

 Solving PDE's is equivalent to optimization of integral functionals

- Solving PDE's is equivalent to optimization of integral functionals
- ۰

$$u_t + F'(u) = 0 \quad \Leftrightarrow \quad \min F(u)$$

- Solving PDE's is equivalent to optimization of integral functionals
- ۲

$$u_t + F'(u) = 0 \quad \Leftrightarrow \quad \min F(u)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Solving PDE's is equivalent to optimization of integral functionals
- ۲

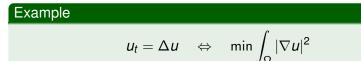
$$u_t + F'(u) = 0 \quad \Leftrightarrow \quad \min F(u)$$

 Does every PDE have its corresponding optimization problem?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Solving PDE's is equivalent to optimization of integral functionals
- ۲

$$u_t + F'(u) = 0 \quad \Leftrightarrow \quad \min F(u)$$



- Does every PDE have its corresponding optimization problem?
- Think of "shock filter": $u_t + \operatorname{sign}(\Delta u) \|\nabla u\| = 0$

イロト イポト イヨト イヨト 三日

