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History

The Brachistochrone Problem:

“Given two points A and B in a vertical
plane, what is the curve traced out by
a point acted on only by gravity, which
starts at A and reaches B in the
shortest time.”
Johann Bernoulli in 1696

In one year Newton, Johann and
Jacob Bernoulli, Leibniz, and de
L’Hôpital came with the solution.
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History

The problem was generalized and an analytic method was
given by Euler (1744) and Lagrange (1760).
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Calculus of Variations

Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals

Calculus of Variations solves

min
u

F (u(x)) ,

where u ∈ X ,
F : X → R,
X . . . Banach space
solution by means of Euler-Lagrange (E-L) equation
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Calculus of Variations

Integral functionals

F (u) =
∫
Ω

f (x ,u(x),∇u(x))dx

Example

x ∈ R2 . . . space of coordinates [x1, x2]

Ω . . . image support
u(x) : R2 → R . . . grayscale image
∇u(x) . . . image gradient [ux1 ,ux2 ]
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Examples

Image Registration
given a set of CP pairs [xi , yi ] ↔ [x̃i , ỹi ]
find x̃ = f (x , y), ỹ = g(x , y)

F (f ) =
∑

i

(x̃i − f (xi , yi))
2 + λ

∫ ∫
f 2
xx + 2f 2

xy + f 2
yydxdy

and a similar equation for g(x , y)

Image Reconstruction
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Examples

Image Registration

Image Reconstruction
given an image acquisition model H(·) and measurement g
find the original image u

F (u) =
∫
(H(u)− g)2dx + λ

∫
|∇u|2
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Image Registration

Image Reconstruction
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Examples

Image Segmentation
find a piece-wise constant representation u of an image g

F (u,K ) =

∫
Ω−K

(u − g)2dx + α

∫
Ω−K

|∇u|2dx + β

∫
K

ds

Motion Estimation
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Examples

Image Segmentation

Motion Estimation
find velocity field v(x) ≡ [v1(x), v2(x)] in an image sequence
u(x , t)

F (v) =
∫

|v · ∇u + ut |dx + α
∑

j

∫
|∇vj |dx + β

∫
c(∇u)|v |2dx

Variational Methods
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Examples

Image Segmentation

Motion Estimation
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Examples

Image classification

and many more
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Examples

Image classification
and many more
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Extrema points

From the differential calculus follows that

if x is an extremum of g(x) : RN → R then ∀ν ∈ RN

d
dε

g(x + εν)
∣∣∣
ε=0

= 0

= ⟨∇g(x), ν⟩ ⇔ ∇g(x) = 0

in 1-D (g : R → R) we get the classical condition

g′(x) = 0
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Variation of Functional

F (u) =
∫ b

a
f (x ,u,u′)dx

if u is extremum of F then from
differential calculus follows

d
dε

F (u + εv)
∣∣∣
ϵ=0

= 0 ∀v

F (u+εv) =
∫ b

a
f (x ,u+εv ,u′+εv ′)dx
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Partial derivatives

Example

f (x ,u) = xu

= xu(x) = x sin x

∂f
∂x

= u

= sin x

but

df
dx

= u

chain rule = sin x + x cos x
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Chain Rule

d
dx

f (u(x), v(x)) =
( ∂

∂u
f (u, v)

)du
dx

+
( ∂

∂v
f (u, v)

)dv
dx

Example

u(x) = x , v(x) = sin x , f = uv = x sin x

d
dx

f (u, v) = v(x)1 + u(x) cos x = sin x + x cos x

Variational Methods
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per partes

∫ b

a
uv ′ = uv

∣∣∣b
a
−
∫ b

a
u′v

Variational Methods
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Derivation of E-L equation

d
dε

F (u + εv) =
d
dε

∫ b

a
f (x ,u + εv ,u′ + εv ′)

=

∫ b

a

∂f
∂u

v +
∂f
∂u′ v

′ chain rule

=

∫ b

a

∂f
∂u

v −
∫ b

a

d
dx

∂f
∂u′ v +

∂f
∂u′ v

∣∣∣b
a

per partes

=

∫ b

a

[
∂f
∂u

− d
dx

∂f
∂u′

]
v +

∂f
∂u′ v

∣∣∣b
a
= 0
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]
v +

∂f
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to be equal to 0 for any v ,
[
∂f
∂u − d

dx
∂f
∂u′

]
= 0 → E-L equation
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Derivation of E-L equation

d
dε
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− d
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]
v +

∂f
∂u′ v
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to be equal to 0, we need boundary conditions,
e.g., fixed u(a),u(b) → v(a) = v(b) = 0.
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Toy case
Shortest path

Find the shortest path between
points A and B, assuming that
one can write y = u(x).

a b

β

α
A

B

y=u(x)

x

y

We want to minimize F (u(x)) =
∫ b

a

√
1 + u′(x)2dx

with b.c. u(a) = α, u(b) = β.

E-L eq.: − d
dx

u′(x)√
1+u′(x)2

= 0

⇒ u′ = C
√

1 + u′2 ⇒

u′ = constant

u(x) is a straight line between A and B.

Variational Methods
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E-L equation

If u(x) : RN → R is extremum of F (u) =
∫
Ω f (x ,u,∇u)dx ,

where ∇u ≡ [ux1 , . . . ,uxN ]
then

F ′(u) =
∂f
∂u

(x ,u,∇u)−
N∑

i=1

d
dxi

(
∂f
∂uxi

(x ,u,∇u)
)

= 0 ,

which is the E-L equation.

Variational Methods
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Beltrami Identity

f (x ,u,u′)
∂f
∂u

− d
dx

( ∂f
∂u′

)
= 0

df
dx

=
∂f
∂u

u′ +
∂f
∂u′u

′′ +
∂f
∂x

∂f
∂u

u′ =
df
dx

− ∂f
∂u′u

′′ − ∂f
∂x

u′ ∂f
∂u

− u′ d
dx

( ∂f
∂u′

)
= 0

df
dx

− ∂f
∂u′u

′′ − ∂f
∂x

− u′ d
dx

( ∂f
∂u′

)
= 0

d
dx

(
f − u′ ∂f

∂u′

)
− ∂f

∂x
= 0

Variational Methods
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Boundary conditions

using “per partes” on u(x , y), n(x , y) ≡ [n1(x , y),n2(x , y)]
normal vector at the boundary ∂Ω

∂

∂ε
F (u + εv) =

∫
(·)dxdy +

∫
∂Ω

[
∂f
∂ux

n1 +
∂f
∂uy

n2

]
v ds

Dirichlet b.c.
u is predefined at the boundary ∂Ω → v(∂Ω) = 0
Neumann b.c.
derivative in the direction of normal ∂u

∂n = 0

Example

Consider F (u) =
∫
Ω

1
2 |∇u|2 =

∫
Ω

1
2(u

2
x + u2

y )

∂f
∂ux

= ux , ∂f
∂uy

= uy
∂f
∂ux

n1 +
∂f
∂uy

n2 = uxn1 + uyn2 = ∂u
∂n = 0

Variational Methods
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E-L equation example

Smoothing functional:

F (u) =
1
2

∫
Ω
|∇u|2dx , f = u2

x + u2
y

E-L equation:

F ′(u) = −∆u = −uxx − uyy

Laplace equation

Variational Methods
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More examples

Total variation of an image function u(x,y):

F (u) =
∫
Ω
|∇u|dx , f =

√
u2

x + u2
y

E-L equation:

∂f
∂u

− d
dx

∂f
∂ux

− d
dy

∂f
∂uy

− d
dx

ux√
u2

x + u2
y

− d
dy

uy√
u2

x + u2
y

= − div

(
∇u
|∇u|

)

Variational Methods
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Steepest Descent
Classical optimization problem

g : R → R, x̃ = min
x

g(x)

Must satisfy g′(x̃) = 0
Imagine, analytical solution is impossible.
Let us walk in the direction opposite to the gradient

xk+1 = xk − αg′(xk ) ,

where α is the step length

Variational Methods
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Steepest Descent

∀α
xk+1 − xk

α
= −g′(xk ) ,

Define x(t) as a function of time such that x(tk ) = xk and
tk+1 = tk + α

dx
dt

(tk ) = lim
α→0

x(tk + α)− x(tk )
α

= lim
α→0

xk+1 − xk

α
= −g′(xk )

Finding the solution with the steepest-descent method is
equivalent to solving P.D.E.:

dx
dt

= −g′(x)

Variational Methods
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P.D.E - Gradient flow

Variational problem

ũ = min
u

F (u(x))

Must satisfy E-L equation

⇒ F ′(ũ) = 0

Find the solution with the steepest-descent method

uk+1 = uk − αF ′(uk ) ,

where α is the step length and must be determined
∀α

uk+1 − uk

α
= −F ′(uk ) ,

Variational Methods
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P.D.E - Gradient flow

Make u also function of time, i.e., u(x , t)

uk (x) ≡ u(x , tk )

and tk+1 = tk + α

lim
α→0

uk+1 − uk

α
≡ ∂u

∂t
(x , tk )

Solving the variational problem with the steepest-descent
method is equivalent to solving P.D.E.:

∂u
∂t

= −F ′(u)

+boundary conditions.

Variational Methods
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Differential Calculus x Variational Calculus

Differential Calculus Variational Calculus

Problem Spec. function function of function
= functional

Necess. Cond. 1st derivative = 0 1st variation = 0
Result one number (or vector) function

Variational Methods
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Optimization Problem

Solving PDE’s is equivalent to optimization of integral
functionals

ut + F ′(u) = 0 ⇔ minF (u)

Example

ut = ∆u ⇔ min

∫
Ω
|∇u|2

Does every PDE have its corresponding optimization
problem?
Think of “shock filter”: ut + sign(∆u)∥∇u∥ = 0

Variational Methods
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