Variational Methods in Image Processing
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History

The Brachistochrone Problem:

“Given two points A and B in a vertical
plane, what is the curve traced out by
a point acted on only by gravity, which
starts at A and reaches B in the
shortest time.”

Johann Bernoulli in 1696
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History

The Brachistochrone Problem:

“Given two points A and B in a vertical
plane, what is the curve traced out by
a point acted on only by gravity, which
starts at A and reaches B in the
shortest time.”

Johann Bernoulli in 1696

In one year Newton, Johann and
Jacob Bernoulli, Leibniz, and de
L'Hbpital came with the solution. B
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History

The problem was generalized and an analytic method was
given by Euler (1744) and Lagrange (1760).
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Calculus of Variations

@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals
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Calculus of Variations

@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals

@ Calculus of Variations solves
min F(u(x)).
where u € X,

F: X—R,
X ...Banach space
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Calculus of Variations

@ Most of the image processing tasks can be formulated as
optimization problems, i.e., minimization of functionals

@ Calculus of Variations solves
min F(u(x)).

where u € X,
F: X—R,
X ...Banach space

@ solution by means of Euler-Lagrange (E-L) equation

Variational Methods



Introduction Motivation E-L PDE

Calculus of Variations

Integral functionals

F(u) = /Q F(x, u(x), Vu(x))dx

@ x € R? ...space of coordinates [xy, Xs]
@ Q ...image support

@ u(x): R? — R...grayscale image

@ Vu(x) ...image gradient [uy, , Uy,]
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Examples

@ Image Registration
given a set of CP pairs [x;, yi] < [Xi, Ji]
find X = f(x,y), y = g(x,y)

F(f)=> (% — f(xi, 1)) + A / / fox + 215, + £, dxdy

i

and a similar equation for g(x, y)
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Examples

@ Image Registration
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Examples

@ Image Registration

@ Image Reconstruction
given an image acquisition model H(-) and measurement g
find the original image u

F(u) = /(H(u)g)zdx+>\/|Vu|2
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Examples

@ Image Registration

U A551R5KYels KRAID
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Examples

@ Image Segmentation
find a piece-wise constant representation u of an image g

F(u,K):/Q K(u—g)de+a/Q_K|Vu|2dx+B/de
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Examples

@ Image Segmentation
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Examples

@ Image Segmentation

@ Motion Estimation
find velocity field v(x) = [v1(x), vo(x)] in an image sequence

u(x,t)

F(v):/]v-Vqu Ur|dX+aZ/ij|dX+B/C(VU)]V]2dX
j
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Examples

@ Image Segmentation

@ Motion Estimation
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Examples

@ Image classification
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Examples

@ Image classification
@ and many more
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@ !ntroduction

@ Derivation of Euler-Lagrange Equation
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Extrema points

From the differential calculus follows that
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

d
%Q(X—l—ev) -—0 =0
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

:gg(x + ev) _,=0 = (Vg(x),v)
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

:gg(x—ksu) 620:0 = (Vg(x),v) & Vgx)=0
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Extrema points

From the differential calculus follows that
if x is an extremum of g(x) : RN — R then vv € RV

;;g(x—ksy) =0 = (Vg().») = Vg(x)=0

e=

in 1-D (g : R — R) we get the classical condition

gx)=0
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Variation of Functional

b
F(u) :/ f(x,u, u")dx
2 ulx)+evix)

777\ A\ ()
\ /
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Variation of Functional

F(u) = /ab f(x,u,u)dx

. . ulx)+evix)
if uis extremum of F then from /’*\ (x)
differential calculus follows \ /N
d \/’J
—F(u+ev) =0 Vv
de e=0 ; %
a

b
F(u+5v):/ f(x,u+ev,u +ev')dx
a
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Partial derivatives

f(x,u) = xu
o _,
ox
o _
ax
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Partial derivatives

f(x,u) = xu = xu(x) = xsin x

87)‘ — = inX

(9X = = Sin

but

df . :

— = chain rule = sin x + x cos x
dx
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Chain Rule

if(U(X), v(x)) = (;If(u, v))Z)L(I + (;vf(u’ V))Z;
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Chain Rule

if(U(X), v(x)) = (;uf(u, v))Z)L(I + (;vf(u’ V))Z;

if(u, V) = v(x)1 + u(x) cos X = sin X 4 X cos X

ax
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Chain Rule

if(U(X), v(x)) = (%f(u, v))Z)L(I + (;vf(u’ V))Z;

if(u, V) = v(x)1 + u(x) cos X = sin X + X cos X

ax
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Chain Rule

if(u, V) = v(x)1 + u(x) cos X = sin X + X cos X

ax
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per partes
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Derivation of E-L equation

C7€F(u+ev / f(x,u+ev,u +ev')
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Derivation of E-L equation

dF(u+ev)—d/bf(x u+ev,u +ev)
de ~de J, ’ ’

b
of or chain rule
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Derivation of E-L equation

d d [P , )
—F(u+ev)=— f(x,u+ev,u +ev')
de J,

de
= ba—fv+ ot chain rule
a Ou ou'
b of b d of of (b
_ YTy per partes

v ——V+—V
a Ou a2 axou +8u’ a
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Derivation of E-L equation

d d [P , )
—F(u+ev)=— f(x,u+ev,u +ev')
de J,

de
= ba—fv+a—f’ chain rule
a Ou ou'
= ba—fv— bga—fwra—fvb per partes
a Ou a2 axou ou' la

b

_/b g_iﬁ V_f_gv =0
~Ja |Ou  dxou ou la
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Derivation of E-L equation

C7€F(u+ev / f(x,u+ev,u +ev)
= ba—fv+a—f ! chain rule
a Ou ou'
= ba—fv— ga—fv afvb per partes
a Ou a2 axou ou' la
_/b[afdaf%afvb_o
a |ou dxou ou' - la

to be equal to 0 for any v, [% — d%’(%} =0 — E-L equation
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Derivation of E-L equation

d d ([P ;o
—F(u+ev)=— [ f(x,u+ev,u +¢eV)
de J,

de
= ’ 8—fv+ oy chain rule
a Ou ou'
= ba—fv - bga—fw— 6—fv ° per partes
a Ou a2 axou ou' la
[ [ PR
a LOu dxou ou'  la
to be equal to 0, we need boundary conditions,
e.g., fixed u(a), u(b) — v(a) = v(b) = 0. I
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Toy case
Shortest path

y
@ Find the shortest path between B ]
points A and B, assuming that
one can write y = u(x). a
2 b X

Variational Methods



Introduction Motivation E-L PDE

Toy case
Shortest path
ylk
B
@ Find the shortest path between B ;
points A and B, assuming that A
one can write y = u(x). . ymu)
b X=

® We want to minimize F(u(x)) = [2 /T + u’ )2dx

with b.c. u(a) = o, u(b ) B.
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = u(x).

Q

@ We want to minimize F(u(x )) fb V1 + U/(x)2dx
with b.c. u( ) =a, u(b) =

)
@ E-Leq.: W—O
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = u(x).

Q

@ We want to minimize F(u(x)) = f: V1 + U/(x)2dx
with b.c. u(a) = «, u(b) = 5.

B
@ E-Leq.: —d%\/% —0=Uu=CV1+u?
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Toy case
Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = u(x).

Q

@ We want to minimize F(u(x)) = fb V1 + U/(x)2dx
with b.c. u()—a u(b) = p.
v _ 0=y =CVI+uR =

@ E-Leq.: 7\/m

U = constant

Variational Methods
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Toy case

Shortest path

@ Find the shortest path between
points A and B, assuming that
one can write y = u(x).

@ We want to minimize F(u(x)) = fb V1 + U/(x)2dx
with b.c. u( ) = a, u(b) = p.
v o
e E-Leq.: \/W =0=u

U = constant
@ u(x) is a straight line between A and B.
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E-L equation

If u(x) : RV — Ris extremum of F(u) = [, f(x, u, Vu)dx,
where Vu = [Uy,, . . ., Ux]
then
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E-L equation

If u(x) : RV — Ris extremum of F(u) = [, f(x, u, Vu)dx,
where Vu = [Uy,, . . ., Ux]
then

which is the E-L equation.
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Beltrami Identity

of d(&f)z

f(x,u,U) 5w o \aw
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Beltrami Identity

of d ;s of
fx,u. 1) Rt

o o, ot of
dx du ou' ox

Variational Methods



Introduction Motivation E-L PDE

Beltrami Identity

of d /of
fix, v, ) Rt
g:gu’+gu”+g
dx ou ou’ ox
ot ,_da _of , of — ,of uﬁ(fl") _
ou ax ou ox ou ax \ou'
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Beltrami Identity

of d /of
fix, v, ) Rt
g:gu’+gu”+g
dx ou ou’ ox
ot ,_da _of , of — ,of uﬁ(fl") _
ou ax ou ox ou ax \ou'

af  of , of ,d((?f)zo

ax ov” Tox Yax\aw
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Beltrami Identity

, of d ;s of
fx, u, ) ou dx (aw) -
o o, ot of
dx ou ou' ox
of ,_df _of , of Of u,d<af>_
ou dx ou ox ou dx \ou'/

af  of , of ,d((?f)zo

ax ov” Tox Yax\aw

a1~V ) = =
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Beltrami Identity
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Beltrami Identity
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Brachistochrone

@ F = [dt, minF ...curve of the
shortest time.

° F:fds_fb \/1+(U (x))? dx

e Jmv2 = mgy(x) = v =/2gu(x)
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Brachistochrone

@ F = [dt, minF ...curve of the
shortest time.

° F:fds_fb \/1+(U (x))? dx

e Jmv2 = mgy(x) = v =/2gu(x)

’ F/W
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Brachistochrone
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Brachistochrone

1+ ()2
2gu
f

0 - = C Beltrami identity
u

fou 9t
Y
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Brachistochrone

1+ ()2
2gu
f

0 - = C Beltrami identity
u

fou 9t
Y
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Brachistochrone

f(u’ u’) — 1+7(U/)2
2gqu
f— u’a—f = C Beltrami identity
ou’
u(1+ (V)% = L
2gC?
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Brachistochrone

N2
flu,u') = v+ W) J;éz)

f— u’;j, = C Beltrami identity

. 1
u(1 + (U)?) = 5902 =k

The solution y = u(x) is a cycloid:
x(0) = %k(ﬂ —sinf), y(9) = %k(1 — cosf)

Variational Methods
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Cycloid

o
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy 4 /
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy 4 /

@ Dirichlet b.c.
u is predefined at the boundary 02 — v(9Q2) =0
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy 4 /

@ Dirichlet b.c.
u is predefined at the boundary 02 — v(9Q2) =0

@ Neumann b.c.
derivative in the direction of normal 24 =0
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy 4 /

@ Dirichlet b.c.
u is predefined at the boundary 02 — v(9Q2) =0

@ Neumann b.c.
derivative in the direction of normal 24 =0

Consider F(u) = [ 5|Vul? = [, 3(u2 + u2)
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy 4 /

@ Dirichlet b.c.
u is predefined at the boundary 02 — v(9Q2) =0

@ Neumann b.c.
derivative in the direction of normal 24 =0

Consider F(u) = [ 5|Vul? = [, 3(u2 + u2)

of _ . of _
auy — U gy, = Uy
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Boundary conditions

@ using “per partes” on u(x, y), n(x, y) = [n1(x, y), na2(x, ¥)]
normal vector at the boundary 09

§€F(u fev) = /(~)dxdy +/
@ Dirichlet b.c.

u is predefined at the boundary 02 — v(9Q2) =0
@ Neumann b.c.

derivative in the direction of normal 24 =0

Consider F(u) = [ 5|Vul? = [, 3(u2 + u2)

of _ of _

aux — Uo gy, = Uy

of of _ _ ou __

M+ Tuynz =UxM +Uyny = 5. =0 stif

= = = = =
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E-L equation example

@ Smoothing functional:

1
F(u):2/9|Vu|2dx, f= 2+ 12
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E-L equation example

@ Smoothing functional:
1
F(u) = / VuPdx, f=u2+u2
2 Ja

@ E-L equation:

F/(U) - _AU - _UXX - Uyy
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E-L equation example

@ Smoothing functional:
1
F(u) = / VuPdx, f=u2+u2
2 Ja

@ E-L equation:
F/(U) = _AU = _UXX - Uyy

Laplace equation
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/u2+us
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/u2+us
@ E-L equation:
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/u2+us
@ E-L equation:

_d U d“y__mv<vu>

X Jru Vg
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/u2+us
@ E-L equation:

ou dxduy dyaduy

a4y <VU>

dX\/u§+u§ dy\/u§+u}2,
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More examples

@ Total variation of an image function u(x,y):

F(u):/Q|Vu|dx, f=\/u2+us
@ E-L equation:
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Outline

@ !ntroduction

@ Variational Problem and P.D.E.
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xk+1 = Xk — ag'(Xk) ,

where « is the step length
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkp1 = Xk — ag'(Xk) ,
where « is the step length

\g(x)

. 4
X nEAE

¥

Variational Methods
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient
Xkr1 = Xk — og' (Xk)
where « is the step length

\g(x)
AN

Variational Methods
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkp1 = Xk — ag'(Xk) ,
where « is the step length

\g(x)
AN

N
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Steepest Descent

@ Classical optimization problem

g:R—)R,)?:m)(ing(X)

@ Must satisfy g’'(x) =0
@ Imagine, analytical solution is impossible.
@ Let us walk in the direction opposite to the gradient

Xkp1 = Xk — ag'(Xk) ,
where « is the step length

\g(x)
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Steepest Descent

@ Vo X Cx
Ak+1 T Ak —9'(xk),
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Steepest Descent

@ Vo

Xk+1 — Xk
= 9,
@ Define x(t) as a function of time such that x(#) = xx and
b1 =k +«
ax (tk—l—a) —X(tk) . Xkl — Xk ,
dt at ) = |m0 o 50 o g (x0)
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Steepest Descent

@ Va X X
Skl — 7k _
o g (%) ,

@ Define x(t) as a function of time such that x(#) = xx and

tk+1 = tk + «

ax ) X(tk—l-a)—X(tk) . Xk —Xk

= |ljm X 2 —
dt ar (k) = oIlePO o 50 o g'(x)

@ Finding the solution with the steepest-descent method is
equivalent to solving PD.E.:

X g

Variational Methods
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P.D.E - Gradient flow

@ Variational problem

Variational Methods
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P.D.E - Gradient flow

@ Variational problem

u= muin F(u(x))

@ Must satisfy E-L equation

— F'(4)=0

Variational Methods
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P.D.E - Gradient flow

@ Variational problem

U= muin F(u(x))
@ Must satisfy E-L equation
= F(i)=0
@ Find the solution with the steepest-descent method

Ukt1 = Uk — aF'(u),

where « is the step length and must be determined

Variational Methods
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P.D.E - Gradient flow

@ Variational problem

U= muin F(u(x))

@ Must satisfy E-L equation
= F(i)=0
@ Find the solution with the steepest-descent method
Ukt = Uk — oF'(uk),

where « is the step length and must be determined

@ Vo

Ukt — Uk _ —F'(ug),
« ]

Variational Methods
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P.D.E - Gradient flow

@ Make v also function of time, i.e., u(x, t)
Uk(X) = U(X, fk)

and 1 =+«

Variational Methods
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P.D.E - Gradient flow

@ Make v also function of time, i.e., u(x, t)
Uk(X) = U(X, fk)
and 1 =+«

. Uki1 — Uk ou
lim — = —
a—0 o ot

(X7 tk)
@ Solving the variational problem with the steepest-descent
method is equivalent to solving P.D.E.:

ou
ot

+boundary conditions.

~F(u)

Variational Methods
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Steepest descent

\q(x)
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Steepest descent
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Steepest descent
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Steepest descent
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Steepest descent
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Steepest descent

\%’(x) u(x)
- T
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Steepest descent

\%’(x) u(x)
\
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Differential Calculus x Variational Calculus

| Differential Calculus | Variational Calculus

Problem Spec. function functlop of function
= functional
Necess. Cond. 1st derivative = 0 1st variation = 0
Result one number (or vector) function
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

Variational Methods
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

°
u+F(u)=0 < minF(u)
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

u+F(u)=0 < minF(u)

u=Au < min/|Vu|2
Q
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

u+F(u)=0 < minF(u)

u=Au < min/|Vu|2
Q

@ Does every PDE have its corresponding optimization
problem?
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Optimization Problem

@ Solving PDE’s is equivalent to optimization of integral
functionals

u+F(u)=0 < minF(u)

u=Au < min/|Vu|2
Q

@ Does every PDE have its corresponding optimization
problem?

@ Think of “shock filter”: u; + sign(Au)||Vu|| =0
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