Variational Methods in Image Processing

ÚTIA AV ČR

Outline

(9) Introduction

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

Outline

(9) Introduction

- Motivation
- Derivation of Euler-Lagrange Equation - Variational Problem and P.D.E.

History

The Brachistochrone Problem:
"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696

History

The Brachistochrone Problem:

"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696

History

The Brachistochrone Problem:

"Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." Johann Bernoulli in 1696

In one year Newton, Johann and Jacob Bernoulli, Leibniz, and de L'Hôpital came with the solution.

History

The problem was generalized and an analytic method was given by Euler (1744) and Lagrange (1760).

Calculus of Variations

- Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals

Calculus of Variations

- Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals
- Calculus of Variations solves

$$
\min _{u} F(u(x)),
$$

where $u \in X$,
$F: X \rightarrow R$,
$X \ldots$ Banach space

Calculus of Variations

- Most of the image processing tasks can be formulated as optimization problems, i.e., minimization of functionals
- Calculus of Variations solves

$$
\min _{u} F(u(x))
$$

where $u \in X$,
$F: X \rightarrow R$,
X...Banach space

- solution by means of Euler-Lagrange (E-L) equation

Calculus of Variations

Integral functionals

$$
F(u)=\int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

Example

- $x \in R^{2} \ldots$ space of coordinates $\left[x_{1}, x_{2}\right]$
- $\Omega \ldots$ image support
- $u(x): R^{2} \rightarrow R \ldots$ grayscale image
- $\nabla u(x) \ldots$ image gradient $\left[u_{x_{1}}, u_{x_{2}}\right]$

Examples

- Image Registration given a set of CP pairs $\left[x_{i}, y_{i}\right] \leftrightarrow\left[\tilde{x}_{i}, \tilde{y}_{i}\right]$ find $\tilde{x}=f(x, y), \tilde{y}=g(x, y)$

$$
F(f)=\sum_{i}\left(\tilde{x}_{i}-f\left(x_{i}, y_{i}\right)\right)^{2}+\lambda \iint f_{x x}^{2}+2 f_{x y}^{2}+f_{y y}^{2} d x d y
$$

and a similar equation for $g(x, y)$

Examples

－Image Registration

Examples

- Image Registration

- Image Reconstruction
given an image acquisition model $H(\cdot)$ and measurement g find the original image u

$$
F(u)=\int(H(u)-g)^{2} d x+\lambda \int|\nabla u|^{2}
$$

Examples

- Image Registration

- Image Reconstruction

Examples

- Image Segmentation
find a piece-wise constant representation u of an image g

$$
F(u, K)=\int_{\Omega-K}(u-g)^{2} d x+\alpha \int_{\Omega-K}|\nabla u|^{2} d x+\beta \int_{K} d s
$$

Examples

- Image Segmentation

Examples

- Image Segmentation

- Motion Estimation
find velocity field $v(x) \equiv\left[v_{1}(x), v_{2}(x)\right]$ in an image sequence $u(x, t)$
$F(v)=\int\left|v \cdot \nabla u+u_{t}\right| d x+\alpha \sum_{j} \int\left|\nabla v_{j}\right| d x+\beta \int c(\nabla u)|v|^{2} d x$

Examples

- Image Segmentation

- Motion Estimation

Examples

- Image classification

Examples

- Image classification
- and many more

Outline

(9) Introduction

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

Extrema points

From the differential calculus follows that

Extrema points

From the differential calculus follows that if x is an extremum of $g(x): R^{N} \rightarrow R$ then $\forall \nu \in R^{N}$

Extrema points

From the differential calculus follows that if x is an extremum of $g(x): R^{N} \rightarrow R$ then $\forall \nu \in R^{N}$

$$
\left.\frac{d}{d \varepsilon} g(x+\varepsilon \nu)\right|_{\varepsilon=0}=0
$$

Extrema points

From the differential calculus follows that if x is an extremum of $g(x): R^{N} \rightarrow R$ then $\forall \nu \in R^{N}$

$$
\left.\frac{d}{d \varepsilon} g(x+\varepsilon \nu)\right|_{\varepsilon=0}=0=\langle\nabla g(x), \nu\rangle
$$

Extrema points

From the differential calculus follows that if x is an extremum of $g(x): R^{N} \rightarrow R$ then $\forall \nu \in R^{N}$

$$
\left.\frac{d}{d \varepsilon} g(x+\varepsilon \nu)\right|_{\varepsilon=0}=0 \quad=\quad\langle\nabla g(x), \nu\rangle \quad \Leftrightarrow \quad \nabla g(x)=0
$$

Extrema points

From the differential calculus follows that if x is an extremum of $g(x): R^{N} \rightarrow R$ then $\forall \nu \in R^{N}$

$$
\left.\frac{d}{d \varepsilon} g(x+\varepsilon \nu)\right|_{\varepsilon=0}=0 \quad=\langle\nabla g(x), \nu\rangle \quad \Leftrightarrow \quad \nabla g(x)=0
$$

in 1-D $(g: R \rightarrow R)$ we get the classical condition

$$
g^{\prime}(x)=0
$$

Variation of Functional

$$
F(u)=\int_{a}^{b} f\left(x, u, u^{\prime}\right) d x
$$

Variation of Functional

$$
F(u)=\int_{a}^{b} f\left(x, u, u^{\prime}\right) d x
$$

if u is extremum of F then from differential calculus follows

$$
\begin{gathered}
\left.\frac{d}{d \varepsilon} F(u+\varepsilon v)\right|_{\epsilon=0}=0 \quad \forall v \\
F(u+\varepsilon v)=\int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) d x
\end{gathered}
$$

Partial derivatives

Example

$$
\begin{aligned}
& f(x, u)=x u \\
& \frac{\partial f}{\partial x}=u \\
& \frac{d f}{d x}=u
\end{aligned}
$$

Partial derivatives

Example

$$
\begin{aligned}
& \qquad f(x, u)=x u=x u(x)=x \sin x \\
& \frac{\partial f}{\partial x}=u=\sin x \\
& \text { but } \\
& \frac{d f}{d x}=\text { chain rule }=\sin x+x \cos x
\end{aligned}
$$

Chain Rule

$$
\frac{d}{d x} f(u(x), v(x))=\left(\frac{\partial}{\partial u} f(u, v)\right) \frac{d u}{d x}+\left(\frac{\partial}{\partial v} f(u, v)\right) \frac{d v}{d x}
$$

Chain Rule

$$
\frac{d}{d x} f(u(x), v(x))=\left(\frac{\partial}{\partial u} f(u, v)\right) \frac{d u}{d x}+\left(\frac{\partial}{\partial v} f(u, v)\right) \frac{d v}{d x}
$$

Example

$$
\begin{gathered}
u(x)=x, v(x)=\sin x, f=u v=x \sin x \\
\frac{d}{d x} f(u, v)=v(x) 1+u(x) \cos x=\sin x+x \cos x
\end{gathered}
$$

Chain Rule

$$
\frac{d}{d x} f(u(x), v(x))=\left(\frac{\partial}{\partial u} f(u, v)\right) \frac{d u}{d x}+\left(\frac{\partial}{\partial v} f(u, v)\right) \frac{d v}{d x}
$$

Example

$$
\begin{gathered}
u(x)=x, v(x)=\sin x, f=u v=x \sin x \\
\frac{d}{d x} f(u, v)=v(x) 1+u(x) \cos x=\sin x+x \cos x
\end{gathered}
$$

Chain Rule

$$
\frac{d}{d x} f(u(x), v(x))=\left(\frac{\partial}{\partial u} f(u, v)\right) \frac{d u}{d x}+\left(\frac{\partial}{\partial v} f(u, v)\right) \frac{d v}{d x}
$$

Example

$$
\begin{gathered}
u(x)=x, v(x)=\sin x, f=u v=x \sin x \\
\frac{d}{d x} f(u, v)=v(x) 1+u(x) \cos x=\sin x+x \cos x
\end{gathered}
$$

per partes

$$
\int_{a}^{b} u v^{\prime}=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v
$$

Derivation of E-L equation

$$
\frac{d}{d \varepsilon} F(u+\varepsilon v)=\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right)
$$

Derivation of E-L equation

$$
\begin{aligned}
\frac{d}{d \varepsilon} F(u+\varepsilon v) & =\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v+\frac{\partial f}{\partial u^{\prime}} v^{\prime}
\end{aligned}
$$

chain rule

Derivation of E-L equation

$$
\begin{aligned}
\frac{d}{d \varepsilon} F(u+\varepsilon v) & =\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) & \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v+\frac{\partial f}{\partial u^{\prime}} v^{\prime} & \text { chain rule } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v-\int_{a}^{b} \frac{d}{d x} \frac{\partial f}{\partial u^{\prime}} v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b} & \text { per partes }
\end{aligned}
$$

Derivation of E-L equation

$$
\begin{array}{rlr}
\frac{d}{d \varepsilon} F(u+\varepsilon v) & =\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) & \quad \text { chain rule } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v+\frac{\partial f}{\partial u^{\prime}} v^{\prime} & \quad \text { per partes } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v-\int_{a}^{b} \frac{d}{d x} \frac{\partial f}{\partial u^{\prime}} v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b} \quad \\
& =\int_{a}^{b}\left[\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u^{\prime}}\right] v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b}=0
\end{array}
$$

Derivation of E-L equation

$$
\begin{array}{rlr}
\frac{d}{d \varepsilon} F(u+\varepsilon v) & =\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) & \quad \text { chain rule } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v+\frac{\partial f}{\partial u^{\prime}} v^{\prime} & \quad \text { per partes } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v-\int_{a}^{b} \frac{d}{d x} \frac{\partial f}{\partial u^{\prime}} v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b} \quad \\
& =\int_{a}^{b}\left[\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u^{\prime}}\right] v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b}=0
\end{array}
$$

to be equal to 0 for any $v,\left[\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u^{\prime}}\right]=0 \rightarrow \mathrm{E}-\mathrm{L}$ equation

Derivation of E-L equation

$$
\begin{array}{rlr}
\frac{d}{d \varepsilon} F(u+\varepsilon v) & =\frac{d}{d \varepsilon} \int_{a}^{b} f\left(x, u+\varepsilon v, u^{\prime}+\varepsilon v^{\prime}\right) & \quad \text { chain rule } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v+\frac{\partial f}{\partial u^{\prime}} v^{\prime} & \quad \text { per partes } \\
& =\int_{a}^{b} \frac{\partial f}{\partial u} v-\int_{a}^{b} \frac{d}{d x} \frac{\partial f}{\partial u^{\prime}} v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b} \quad \\
& =\int_{a}^{b}\left[\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u^{\prime}}\right] v+\left.\frac{\partial f}{\partial u^{\prime}} v\right|_{a} ^{b}=0
\end{array}
$$

to be equal to 0 , we need boundary conditions,
e.g., fixed $u(a), u(b) \rightarrow v(a)=v(b)=0$.

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

- We want to minimize $F(u(x))=\int_{a}^{b} \sqrt{1+u^{\prime}(x)^{2}} d x$ with b.c. $u(a)=\alpha, u(b)=\beta$.

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

- We want to minimize $F(u(x))=\int_{a}^{b} \sqrt{1+u^{\prime}(x)^{2}} d x$ with b.c. $u(a)=\alpha, u(b)=\beta$.
- E-L eq.: $-\frac{d}{d x} \frac{u^{\prime}(x)}{\sqrt{1+u^{\prime}(x)^{2}}}=0$

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

- We want to minimize $F(u(x))=\int_{a}^{b} \sqrt{1+u^{\prime}(x)^{2}} d x$ with b.c. $u(a)=\alpha, u(b)=\beta$.
- E-L eq.: $-\frac{d}{d x} \frac{u^{\prime}(x)}{\sqrt{1+u^{\prime}(x)^{2}}}=0 \Rightarrow u^{\prime}=C \sqrt{1+u^{\prime 2}}$

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

- We want to minimize $F(u(x))=\int_{a}^{b} \sqrt{1+u^{\prime}(x)^{2}} d x$ with b.c. $u(a)=\alpha, u(b)=\beta$.
- E-L eq.: $-\frac{d}{d x} \frac{u^{\prime}(x)}{\sqrt{1+u^{\prime}(x)^{2}}}=0 \Rightarrow u^{\prime}=C \sqrt{1+u^{\prime 2}} \Rightarrow$
$u^{\prime}=$ constant

Toy case

Shortest path

- Find the shortest path between points A and B, assuming that one can write $y=u(x)$.

- We want to minimize $F(u(x))=\int_{a}^{b} \sqrt{1+u^{\prime}(x)^{2}} d x$ with b.c. $u(a)=\alpha, u(b)=\beta$.
- E-L eq.: $-\frac{d}{d x} \frac{u^{\prime}(x)}{\sqrt{1+u^{\prime}(x)^{2}}}=0 \Rightarrow u^{\prime}=C \sqrt{1+u^{\prime 2}} \Rightarrow$ $u^{\prime}=$ constant
- $\mathrm{u}(\mathrm{x})$ is a straight line between A and B.

E-L equation

If $u(x): R^{N} \rightarrow R$ is extremum of $F(u)=\int_{\Omega} f(x, u, \nabla u) d x$, where $\nabla u \equiv\left[u_{x_{1}}, \ldots, u_{x_{N}}\right]$ then

E-L equation

If $u(x): R^{N} \rightarrow R$ is extremum of $F(u)=\int_{\Omega} f(x, u, \nabla u) d x$,
where $\nabla u \equiv\left[u_{x_{1}}, \ldots, u_{x_{N}}\right]$ then

$$
F^{\prime}(u)=\frac{\partial f}{\partial u}(x, u, \nabla u)-\sum_{i=1}^{N} \frac{d}{d x_{i}}\left(\frac{\partial f}{\partial u_{x_{i}}}(x, u, \nabla u)\right)=0,
$$

which is the E-L equation.

Beltrami Identity

$$
f\left(x, u, u^{\prime}\right)
$$

$$
\frac{\partial f}{\partial u}-\frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0
$$

Beltrami Identity

$$
\begin{aligned}
& f\left(x, u, u^{\prime}\right) \\
& \frac{d f}{d x}=\frac{\partial f}{\partial u} u^{\prime}+\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}+\frac{\partial f}{\partial x}
\end{aligned}
$$

Beltrami Identity

$$
\begin{aligned}
f\left(x, u, u^{\prime}\right) & \frac{\partial f}{\partial u}-\frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0 \\
\frac{d f}{d x}=\frac{\partial f}{\partial u} u^{\prime}+\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}+\frac{\partial f}{\partial x} & \\
\frac{\partial f}{\partial u} u^{\prime}=\frac{d f}{d x}-\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}-\frac{\partial f}{\partial x} & u^{\prime} \frac{\partial f}{\partial u}-u^{\prime} \frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0
\end{aligned}
$$

Beltrami Identity

$$
\begin{array}{cr}
f\left(x, u, u^{\prime}\right) & \frac{\partial f}{\partial u}-\frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0 \\
\frac{d f}{d x}=\frac{\partial f}{\partial u} u^{\prime}+\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}+\frac{\partial f}{\partial x} & \\
\frac{\partial f}{\partial u} u^{\prime}=\frac{d f}{d x}-\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}-\frac{\partial f}{\partial x} & u^{\prime} \frac{\partial f}{\partial u}-u^{\prime} \frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0 \\
\frac{d f}{d x}-\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}-\frac{\partial f}{\partial x}-u^{\prime} \frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0
\end{array}
$$

Beltrami Identity

$$
\begin{gathered}
f\left(x, u, u^{\prime}\right) \\
\frac{d f}{d x}=\frac{\partial f}{\partial u} u^{\prime}+\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}+\frac{\partial f}{\partial x}-\frac{d}{d x}\left(\frac{\partial t}{\partial u^{\prime}}\right)=0 \\
\frac{\partial f}{\partial u} u^{\prime}=\frac{d f}{d x}-\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}-\frac{\partial f}{\partial x} \\
\frac{d f}{d x}-\frac{\partial f}{\partial u^{\prime}} u^{\prime \prime}-\frac{\partial f}{\partial x}-u^{\prime} \frac{d}{\partial u}-u^{\prime} \frac{d}{d x}\left(\frac{\partial f}{\partial u^{\prime}}\right)=0 \\
\frac{d}{d x}\left(f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}\right)-\frac{\partial f}{\partial x}=0
\end{gathered}
$$

Beltrami Identity

$$
\frac{d}{d x}\left(f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}\right)-\frac{\partial f}{\partial x}=0
$$

Beltrami Identity

$$
\frac{d}{d x}\left(f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}\right)-\frac{\partial f}{\partial x}=0
$$

if $\frac{\partial T}{\partial x}=0$ then

$$
\frac{d}{d x}\left(f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}\right)=0 \Longleftrightarrow f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}=C
$$

Brachistochrone

- $F=\int d t, \operatorname{minF} \ldots$ curve of the shortest time.
- $F=\int \frac{d s}{v}=\int_{0}^{b} \frac{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}{v} d x$
- $\frac{1}{2} m v^{2}=m g y(x) \Rightarrow v=\sqrt{2 g u(x)}$

Brachistochrone

- $F=\int d t, \operatorname{minF} \ldots$ curve of the shortest time.
- $F=\int \frac{d s}{v}=\int_{0}^{b} \frac{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}{v} d x$
- $\frac{1}{2} m v^{2}=m g y(x) \Rightarrow v=\sqrt{2 g u(x)}$

$$
F=\int_{0}^{b} \frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}} d x
$$

Brachistochrone

$$
f\left(u, u^{\prime}\right)=\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}}
$$

Brachistochrone

$$
\begin{aligned}
f\left(u, u^{\prime}\right) & =\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}} \\
& f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}=C \quad \text { Beltrami identity }
\end{aligned}
$$

Brachistochrone

$$
\begin{gathered}
f\left(u, u^{\prime}\right)=\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}} \\
f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}=C \quad \text { Beltrami identity } \\
\vdots
\end{gathered}
$$

Brachistochrone

$$
\begin{aligned}
& f\left(u, u^{\prime}\right)=\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}} \\
& f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}=C \quad \text { Beltrami identity } \\
& \vdots: \\
& u\left(1+\left(u^{\prime}\right)^{2}\right)=\frac{1}{2 g C^{2}}=k
\end{aligned}
$$

Brachistochrone

$$
\begin{aligned}
& f\left(u, u^{\prime}\right)=\frac{\sqrt{1+\left(u^{\prime}\right)^{2}}}{\sqrt{2 g u}} \\
& f-u^{\prime} \frac{\partial f}{\partial u^{\prime}}=C \quad \text { Beltrami identity } \\
& \vdots \\
& u\left(1+\left(u^{\prime}\right)^{2}\right)=\frac{1}{2 g C^{2}}=k
\end{aligned}
$$

The solution $y=u(x)$ is a cycloid:

$$
x(\theta)=\frac{1}{2} k(\theta-\sin \theta), \quad y(\theta)=\frac{1}{2} k(1-\cos \theta)
$$

Cycloid

Play avi

Play avi

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

- Dirichlet b.c.
u is predefined at the boundary $\partial \Omega \rightarrow v(\partial \Omega)=0$

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

- Dirichlet b.c.
u is predefined at the boundary $\partial \Omega \rightarrow v(\partial \Omega)=0$
- Neumann b.c.
derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}}=0$

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

- Dirichlet b.c.
u is predefined at the boundary $\partial \Omega \rightarrow v(\partial \Omega)=0$
- Neumann b.c.
derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}}=0$

Example

Consider $F(u)=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}=\int_{\Omega} \frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)$

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

- Dirichlet b.c.
u is predefined at the boundary $\partial \Omega \rightarrow v(\partial \Omega)=0$
- Neumann b.c.
derivative in the direction of normal $\frac{\partial u}{\partial n}=0$

Example

Consider $F(u)=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}=\int_{\Omega} \frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)$
$\frac{\partial f}{\partial u_{x}}=u_{x}, \frac{\partial f}{\partial u_{y}}=u_{y}$

Boundary conditions

- using "per partes" on $u(x, y), \mathbf{n}(x, y) \equiv\left[n_{1}(x, y), n_{2}(x, y)\right]$ normal vector at the boundary $\partial \Omega$

$$
\frac{\partial}{\partial \varepsilon} F(u+\varepsilon v)=\int(\cdot) d x d y+\int_{\partial \Omega}\left[\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}\right] v d s
$$

- Dirichlet b.c.
u is predefined at the boundary $\partial \Omega \rightarrow v(\partial \Omega)=0$
- Neumann b.c.
derivative in the direction of normal $\frac{\partial u}{\partial \mathbf{n}}=0$

Example

Consider $F(u)=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}=\int_{\Omega} \frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)$
$\frac{\partial f}{\partial u_{x}}=u_{x}, \frac{\partial f}{\partial u_{y}}=u_{y}$
$\frac{\partial f}{\partial u_{x}} n_{1}+\frac{\partial f}{\partial u_{y}} n_{2}=u_{x} n_{1}+u_{y} n_{2}=\frac{\partial u}{\partial \mathbf{n}}=0$

E-L equation example

- Smoothing functional:

$$
F(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x, \quad f=u_{x}^{2}+u_{y}^{2}
$$

E-L equation example

- Smoothing functional:

$$
F(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x, \quad f=u_{x}^{2}+u_{y}^{2}
$$

- E-L equation:

$$
F^{\prime}(u)=-\Delta u=-u_{x x}-u_{y y}
$$

E-L equation example

- Smoothing functional:

$$
F(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x, \quad f=u_{x}^{2}+u_{y}^{2}
$$

- E-L equation:

$$
F^{\prime}(u)=-\Delta u=-u_{x x}-u_{y y}
$$

Laplace equation

More examples

- Total variation of an image function $u(x, y)$:

$$
F(u)=\int_{\Omega}|\nabla u| d x, \quad f=\sqrt{u_{x}^{2}+u_{y}^{2}}
$$

More examples

- Total variation of an image function $u(x, y)$:

$$
F(u)=\int_{\Omega}|\nabla u| d x, \quad f=\sqrt{u_{x}^{2}+u_{y}^{2}}
$$

- E-L equation:

$$
\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u_{x}}-\frac{d}{d y} \frac{\partial f}{\partial u_{y}}
$$

More examples

- Total variation of an image function $\mathrm{u}(\mathrm{x}, \mathrm{y})$:

$$
F(u)=\int_{\Omega}|\nabla u| d x, \quad f=\sqrt{u_{x}^{2}+u_{y}^{2}}
$$

- E-L equation:

$$
\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u_{x}}-\frac{d}{d y} \frac{\partial f}{\partial u_{y}}
$$

$$
-\frac{d}{d x} \frac{u_{x}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}-\frac{d}{d y} \frac{u_{y}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

More examples

- Total variation of an image function $\mathrm{u}(\mathrm{x}, \mathrm{y})$:

$$
F(u)=\int_{\Omega}|\nabla u| d x, \quad f=\sqrt{u_{x}^{2}+u_{y}^{2}}
$$

- E-L equation:

$$
\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u_{x}}-\frac{d}{d y} \frac{\partial f}{\partial u_{y}}
$$

$$
-\frac{d}{d x} \frac{u_{x}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}-\frac{d}{d y} \frac{u_{y}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

More examples

- Total variation of an image function $\mathrm{u}(\mathrm{x}, \mathrm{y})$:

$$
F(u)=\int_{\Omega}|\nabla u| d x, \quad f=\sqrt{u_{x}^{2}+u_{y}^{2}}
$$

- E-L equation:

$$
\frac{\partial f}{\partial u}-\frac{d}{d x} \frac{\partial f}{\partial u_{x}}-\frac{d}{d y} \frac{\partial f}{\partial u_{y}}
$$

$$
-\frac{d}{d x} \frac{u_{x}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}-\frac{d}{d y} \frac{u_{y}}{\sqrt{u_{x}^{2}+u_{y}^{2}}}=-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)
$$

Outline

(9) Introduction

- Motivation
- Derivation of Euler-Lagrange Equation
- Variational Problem and P.D.E.

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$
x_{k+1}=x_{k}-\alpha g^{\prime}\left(x_{k}\right)
$$

where α is the step length

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$
x_{k+1}=x_{k}-\alpha g^{\prime}\left(x_{k}\right)
$$

where α is the step length

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$
x_{k+1}=x_{k}-\alpha g^{\prime}\left(x_{k}\right)
$$

where α is the step length

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$
x_{k+1}=x_{k}-\alpha g^{\prime}\left(x_{k}\right)
$$

where α is the step length

Steepest Descent

- Classical optimization problem

$$
g: R \rightarrow R, \tilde{x}=\min _{x} g(x)
$$

- Must satisfy $g^{\prime}(\tilde{x})=0$
- Imagine, analytical solution is impossible.
- Let us walk in the direction opposite to the gradient

$$
x_{k+1}=x_{k}-\alpha g^{\prime}\left(x_{k}\right)
$$

where α is the step length

Steepest Descent

- $\forall \alpha$

$$
\frac{x_{k+1}-x_{k}}{\alpha}=-g^{\prime}\left(x_{k}\right)
$$

Steepest Descent

- $\forall \alpha$

$$
\frac{x_{k+1}-x_{k}}{\alpha}=-g^{\prime}\left(x_{k}\right)
$$

- Define $x(t)$ as a function of time such that $x\left(t_{k}\right)=x_{k}$ and $t_{k+1}=t_{k}+\alpha$ $\frac{d x}{d t}\left(t_{k}\right)=\lim _{\alpha \rightarrow 0} \frac{x\left(t_{k}+\alpha\right)-x\left(t_{k}\right)}{\alpha}=\lim _{\alpha \rightarrow 0} \frac{x_{k+1}-x_{k}}{\alpha}=-g^{\prime}\left(x_{k}\right)$

Steepest Descent

- $\forall \alpha$

$$
\frac{x_{k+1}-x_{k}}{\alpha}=-g^{\prime}\left(x_{k}\right)
$$

- Define $x(t)$ as a function of time such that $x\left(t_{k}\right)=x_{k}$ and

$$
\begin{aligned}
& t_{k+1}=t_{k}+\alpha \\
& \frac{d x}{d t}\left(t_{k}\right)=\lim _{\alpha \rightarrow 0} \frac{x\left(t_{k}+\alpha\right)-x\left(t_{k}\right)}{\alpha}=\lim _{\alpha \rightarrow 0} \frac{x_{k+1}-x_{k}}{\alpha}=-g^{\prime}\left(x_{k}\right)
\end{aligned}
$$

- Finding the solution with the steepest-descent method is equivalent to solving P.D.E.:

$$
\frac{d x}{d t}=-g^{\prime}(x)
$$

P.D.E - Gradient flow

- Variational problem

$$
\tilde{u}=\min _{u} F(u(x))
$$

P.D.E - Gradient flow

- Variational problem

$$
\tilde{u}=\min _{u} F(u(x))
$$

- Must satisfy E-L equation

$$
\Rightarrow F^{\prime}(\tilde{u})=0
$$

P.D.E - Gradient flow

- Variational problem

$$
\tilde{u}=\min _{u} F(u(x))
$$

- Must satisfy E-L equation

$$
\Rightarrow F^{\prime}(\tilde{u})=0
$$

- Find the solution with the steepest-descent method

$$
u_{k+1}=u_{k}-\alpha F^{\prime}\left(u_{k}\right)
$$

where α is the step length and must be determined

P.D.E - Gradient flow

- Variational problem

$$
\tilde{u}=\min _{u} F(u(x))
$$

- Must satisfy E-L equation

$$
\Rightarrow F^{\prime}(\tilde{u})=0
$$

- Find the solution with the steepest-descent method

$$
u_{k+1}=u_{k}-\alpha F^{\prime}\left(u_{k}\right)
$$

where α is the step length and must be determined

- $\forall \alpha$

$$
\frac{u_{k+1}-u_{k}}{\alpha}=-F^{\prime}\left(u_{k}\right)
$$

P.D.E - Gradient flow

- Make u also function of time, i.e., $u(x, t)$

$$
u_{k}(x) \equiv u\left(x, t_{k}\right)
$$

and $t_{k+1}=t_{k}+\alpha$

$$
\lim _{\alpha \rightarrow 0} \frac{u_{k+1}-u_{k}}{\alpha} \equiv \frac{\partial u}{\partial t}\left(x, t_{k}\right)
$$

P.D.E - Gradient flow

- Make u also function of time, i.e., $u(x, t)$

$$
u_{k}(x) \equiv u\left(x, t_{k}\right)
$$

and $t_{k+1}=t_{k}+\alpha$

$$
\lim _{\alpha \rightarrow 0} \frac{u_{k+1}-u_{k}}{\alpha} \equiv \frac{\partial u}{\partial t}\left(x, t_{k}\right)
$$

- Solving the variational problem with the steepest-descent method is equivalent to solving P.D.E.:

$$
\frac{\partial u}{\partial t}=-F^{\prime}(u)
$$

+boundary conditions.

Steepest descent

Steepest descent

Steepest descent

Steepest descent

Steepest descent

Steepest descent

Steepest descent

Differential Calculus x Variational Calculus

	Differential Calculus	Variational Calculus
Problem Spec.	function	function of function $=$ functional
Necess. Cond.	1st derivative $=0$	1st variation $=0$
Result	one number (or vector)	function

Optimization Problem

- Solving PDE's is equivalent to optimization of integral functionals

Optimization Problem

- Solving PDE's is equivalent to optimization of integral functionals
-

$$
u_{t}+F^{\prime}(u)=0 \quad \Leftrightarrow \quad \min F(u)
$$

Optimization Problem

- Solving PDE's is equivalent to optimization of integral functionals

0

$$
u_{t}+F^{\prime}(u)=0 \quad \Leftrightarrow \quad \min F(u)
$$

Example

$$
u_{t}=\Delta u \quad \Leftrightarrow \quad \min \int_{\Omega}|\nabla u|^{2}
$$

Optimization Problem

- Solving PDE's is equivalent to optimization of integral functionals
-

$$
u_{t}+F^{\prime}(u)=0 \quad \Leftrightarrow \quad \min F(u)
$$

Example

$$
u_{t}=\Delta u \quad \Leftrightarrow \quad \min \int_{\Omega}|\nabla u|^{2}
$$

- Does every PDE have its corresponding optimization problem?

Optimization Problem

- Solving PDE's is equivalent to optimization of integral functionals
-

$$
u_{t}+F^{\prime}(u)=0 \quad \Leftrightarrow \quad \min F(u)
$$

Example

$$
u_{t}=\Delta u \quad \Leftrightarrow \quad \min \int_{\Omega}|\nabla u|^{2}
$$

- Does every PDE have its corresponding optimization problem?
- Think of "shock filter": $u_{t}+\operatorname{sign}(\Delta u)\|\nabla u\|=0$

Variational Methods

