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Abstrakt: Super-rozlišení (SR) je výkonná metoda pro pozorování, která nabízí významné zlepšení rozlišení
jak v laterálním, tak axiálním směru dosahující daleko za difrakční limit standardního světelného mikro-
skopu. To vedlo k mnoha významným objevům v biologii během posledních 50-ti let od vzniku prvních
metod SR. Mezi metody SR má mikroskopie se strukturovaným osvětlením (SIM) důležitou výhodu ve
své flexibilitě implementace a fotonové efektivitě, díky které hraje vedoucí roli v akvizici živých buněk s
vysokou frekvencí snímků.
Nejprve jsou prezentovány základní fyzikální principy nutné pro určení přenosu světla optickým
mikroskopem, v podobě odvození vlnové rovnice pro elektro-magnetické (EM) pole spolu s jejími dvěma
řešeními nejvýznamnějšími pro aplikaci v optice mikroskopu. Dále je představen přehled dostupných me-
tod SR se zaměřením na srovnání jejich užití v biologických pozorováních. Intuitivní pojetí fungování
mikroskopie se strukturovaným osvětlením je ilustrováno a následně matematicky představena podstata
při harmonickém osvětlení. Pomocí přehledu příkladů využití SIMu v kombinaci s dalšími modalitami
mikroskopie a v různých implementacích demonstruji flexibilitu této metody SR.
Poté je provedena analýza pozorování mikrokuliček z akvizice pomocí harmonického osvětlení s cílem
vylepšit kvalitu rekonstrukce. Jsou odvozeny, implementovány a demonstrovány dvě různé metody rekon-
strukce v několika variantách. Schopnost omezit počet akvizicí potřebných pro rekonstrukci je diskutována
a ukázána spolu s komentářem k dalším aspektům, výhodám a nevýhodám rekonstrukčních technik, které
byly i nebyly použity.
Další zlepšení rekonstrukčních metod snižováním přítomnosti artefaktů a zlepšováním vizuální kvality a
rozlišení je dosaženo rekonstrukcí s odhadovanou přenosovou funkcí optického systému. Odhad je proveden
pomocí různých postupů využívajících model struktury vzorku, který určen vlastním novým algoritmem
inspirovaným zavedenými metodami digitálního zpracování obrazu. Zvýšená věrnost rekonstrukce akvi-
zice nad aktuálně používanou metodou pro rekonstrukci endocytózy na povrchu buněčné membrány je
dosažena odhadem přenosové funkce řízené přímo daty z akvizice samotné.

Klíčová slova: mikroskopie se strukturovaným osvětlením, super-rozlišení, přenosová funkce
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Abstract: Super-resolution (SR) is a powerful imaging approach which offers significant gains in both
lateral and axial resolution far beyond the diffraction limit of standard wide-field microscopy. This has
lead to numerous breakthroughs in biology during the past 50 years of its existence. Among SR methods,
structured illumination microscopy (SIM) has an major advantage with its flexibility of implementation
and photon-efficiency due to which it plays a lead role in high-frequency in vivo cell acquisitions.
First the elementary physics necessary for determining the transfer of light through an microscope is
given by the derivation of the electro-magnetic (EM) field wave equation along with two of its most
significant solutions for the application of microscopy optics. Next an condensed but informative overview
of available SR methods is presented with the focus on comparing their utility in biological sensing
applications. Intuitive conception behind the functioning of SIM is illustrated before the mathematical
presentation of the fundamentals of harmonic SIM. An enumeration of examples where SIM is used in
combination with other microscopy modalities and in various implementations demonstrates the flexibility
the technique.
Then an analysis of micro-beads images from a harmonic SIM acquisition is performed with the goal
of enhancing the reconstruction. Two different methods of reconstruction are derived, implemented and
demonstrated in multiple variations. The ability of limiting the number of acquisitions necessary for the
reconstruction is discussed and shown alongside a commentary of further aspects, benefits and drawbacks
of the reconstruction techniques.
Further enhancements to the reconstruction techniques in the reduction of artefacts and improvement
of visual quality and resolution is achieved by performing them with an estimated transfer function
of the optical system. The estimation is performed using various procedures utilizing the model of the
source structure in the object space of the determined by a custom novel algorithm inspired by multiple
digital image processing algorithms. The fidelity over the SIM imaging technique currently used for the
reconstruction of endocytosis at the cell membrane surface is attained by the data-driven transfer function
estimate.
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Introduction

Advancements in precise and accurate observation techniques have always been at the forefront of scientific
endeavours. Novel approaches often lead to chains of revolutionary new discoveries in the fields that utilize
these methods.
In microscopy, a physical limit that for a long time seemed unbreakable was Abbe’s resolution limit, due
to diffraction induced by the light transfer through the microscope. This bound, restricting both the
lateral (≈ 180 nm) and the axial (≈ 450 nm) axes of resolution, remained a constraint for the precision
of observation in microscopy for more than a century from its derivation, stifling progress in biology and
countless other fields which depend on measurement and observation through microscopy imaging.
Hope for better resolving power was re-established by a breakthrough at the hands of the Cremer brothers
in the mid 1970s by a revolutionary approach to microscopy observation (4𝜋M) that lead to the possibility
of about 4-fold improvement in the axial resolution. This discovery incited a revolution, in which new
methods where introduced at an unprecedented speed for this field. As a result of this rise of attention,
not long after, methods for improving the more practicable lateral resolution where developed and im-
plemented. These methods which outperform the physical limits of Abbe in at least one of the axes of
resolution became collectively known as super-resolution (SR) methods. Most of these methods, however,
relied on long acquisition times stemming from the necessity of sensing a narrow volume of the sample
object field which deemed them unusable for applications with non-static specimen.
This pressing barrier for implementing SR for use in in vivo examination was overcome with a new
technique in the mid 1990s which was based on significantly a different principles within the optical
acquisition than the previous methods. Improvements that built upon the presented aforementioned SIM
method were rapidly developed and its implementation was widely adopted throughout the scientific
community. Further methods that employed the principles of SIM also found there grounds in application.
These two waves of research have resulted in the creation of a plethora of approaches and implementations
of SR methods.
The original SIM technique is still very relevant in present-day and the reconstruction methods for it are
continually improving. An underlying concept behind SIM is the transfer function, which is modulated
by the structured illumination which the SIM method prescribes. With respect to this, the knowledge of
the correct transfer function is fundamental to reconstruction techniques of the SIM method.
A transfer function is a powerful concept, which is not limited to microscopy. It is fundamental due
to the fact that it fully determines the mapping of a linear system, which it represents. The utility
of the knowledge of transfer functions is undeniable since physical systems are often linear or can be
approximated by a linear system.
In the context of SIM, an incorrect transfer function, may lead to artefacts and undetermined fidelity of
the reconstruction and so it is crucial to determine it correctly. With this in mind, there are two major
approaches to deriving the transfer function of the optical system:
modeling Considers the context of the optical setup and the nature of the propagating light to determine

an appropriate transfer function with the relevant aberrations of the lens system and aperture.
estimation Resorts to the sensed signal of an acquisition and through modeling the source signal which

produced the result, infers an estimated transfer function.
I use the estimation approach to derive the applicable transfer function of our acquisition in approximation
for the whole field and subsequently for the individual locations within the focal plane. I incorporate this
estimate into the reconstruction procedure to achieve better results than were previously available for use
in our analysis of endocytosis at the outer cell membrane.
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To recognize the fundamental inherent limits present in optical sensing,
it is important to understand the physical nature of the processed
signal, light.

1.1 Historical Context

Light was perceived in many different ways throughout the history of
human kind. The first major work that studied optics was written by
Euclid in the 4th century BCE. It mainly dealt with the geometry of
vision and did not study the physical aspects of light in much detail.
However his views of light and vision were significantly different from
ours1. Optics as a field is often considered to have been commenced1: For instance, he conjectured that

vision is formed by rays emanating
from the observers eyes.

by Ḥasan Ibn al-Haytham2 in the 11th century by his experimental
2: More commonly known by the la-
tinized name in Europe as Alhazen.

work and the Book of Optics, which he wrote to summarize them. It
introduced the idea that vision results from light entering our eyes
through the retina as opposed to the other way around3. He also ex-3: This was further developed by Jo-

hannes Kepler in the 17th century,
who suggested the concept of retinal
images.

tensively studied the camera obscura phenomenon in his treatise On
the Shape of the Eclipse in which he ventured to explain the crescent
shaped images formed during an eclipse when light passes through a
small aperture as can be seen in Figure 1.1 [1].[1]: Raynaud (2016), A Critical Edi-

tion of Ibn al-Haytham’s On the Shape
of the Eclipse: The First Experimental
Study of the Camera Obscura

Figure 1.1: Crescent shaped images
formed during the solar eclipse when
light passes through openings be-
tween the leaves of a tree.

There have been many attempts to explain light during the middle ages,
but more often than not, they were not in accordance with its known
experimental properties. In particular, a notable idea was brought for-
ward by René Descartes in the beginning of the 17th century, who
described light as a propagating pressure in an unspecified medium4.

4: This view has interestingly close
properties to the way, light is de-
scribed in present day optics.

In 1690 Christiaan Huygens introduces the wave theory of light in his
work Traité de la Lumière. His major contribution was the concep-
tualization of light as a vibration in a medium and his methods of
analysis are used even today termed as the Huygens-Fresnel princi-
ple. The first comprehensive theory of light that was widely adopted,
can be dated back to Sir Isaac Newton at the start of the 18th cen-
tury. Newton was aware of the wave theory of light but rejected it in
favour of the corpuscular theory, which he laid the foundations to [2].

[2]: Isaac Newton (1704), Opticks, Or,
A Treatise of the Reflections, Refrac-
tions, Inflections & Colours of Light

It states that light is composed of particles called corpuscles travelling
in a straight line with finite velocity. By the rise of the corpuscular the-
ory, the branch that we now call geometrical optics, which was earlier
developed by Alhazen was markedly improved. The corpuscular theory
and geometrical optics explained a mayor part of the conundrums that
astronomers had about the optical instrumentation of that time and
due to this it prevailed for a long time at the forefront of established
theories of light.

However, for the recognition of the way light passes through and trans-
forms in a microscope, or in fact any optical system that we use for
observation, and especially to study the resolution that is possible to



1.2 Wave Theory of Light 5

achieve, it is necessary to advance to the later centuries and develop-
ments made in the wave theory of light. A radical shift towards the
supremacy of the wave model explanation instead of light rays, was the
famous double-slit experiment performed by Thomas Young in 1801,
which leads to results that are in conflict with the sole explanation by
the simpler corpuscular theory. Further mathematical structure to the
notion of interference emerging from the double-slit experiment was
given by Augustin-Jean Fresnel, who in 1818 was the first to give a
satisfactory explanation of diffraction by a straight edge in the form of
the Fresnel integral, which will be important for us in further sections.
The brilliant mathematician James Clerk Maxwell later in 1873 gave
a unified and robust theoretical framework for EM fields, which light
is a manifestation of.

1.2 Foundations of the Wave Theory of
Light

Maxwell’s unification of the theory of EM fields came in the manner
of twenty differential equations which were later condensed by Oliver
Heaviside into the notorious forms of the four equations that are today
known as Maxwell’s equations. Given in their most general differential
form in SI units, they are

∇ ⋅ 𝜀𝐄 = 𝜌, (Gauss’s law for 𝐄)
∇ ⋅ 𝜇𝐁 = 0, (Gauss’s law for 𝐁)
∇ × 𝐄 = − 𝜕𝑡𝐁, (Faraday’s law)
∇ × 𝐁 = 𝜇𝐉 + 𝜀𝜇 𝜕𝑡𝐄, (Ampère-Maxwell’s law)

where 𝐄 = 𝐄( #–𝑟 , 𝑡) and 𝐁 = 𝐁( #–𝑟 , 𝑡) are the electric and magnetic
fields respectively, 𝐉 = 𝐉( #–𝑟 , 𝑡) is the current density, 𝜌 = 𝜌( #–𝑟 ) is
the electric charge density, 𝜀 = 𝜀( #–𝑟 ) and 𝜇 = 𝜇( #–𝑟 ) are permittivity
and permeability of the propagation medium respectively. These equa-
tions can be simplified for the case of the medium that is applicable to
us [3]. As a first simplification, we assume the absence of free charges [3]: Goodman (2005), Foundations of

Scalar Diffraction Theory(𝜌 ≡ 0) and free currents (𝐉 ≡ 0) which lead to the simplification
of Gauss’s law for 𝐄 and Ampère-Maxwell’s law. We postulate a well-
behaved insulating (dielectric) medium in its response to the electric
field, where 𝐃 = 𝜀𝐄 + 𝐏 is the electric displacement field and 𝐏 is the
field of polarization, in the form of an assumption of linearity imply-
ing that the polarization 𝐏 is proportional to the electric field, that is
𝐏 ∝ 𝐄, non-dispersiveness meaning that the polarization 𝐏(𝑡) is depen-
dent on 𝐄(𝑡) only at the same time instant, local homogeneity meaning
that the dependence of 𝐏 on 𝐄 is the same at every point #–𝑟 within
a neighbourhood and isotropy meaning that the relation is identical
for every direction of 𝐄. In the terms of a medium within which the
light propagates non-dispersiveness implies that 𝜀(𝜆) ≡ const. where
𝜆 is the wavelength of the propagating EM wave, homogeneity im-
plies 𝜀( #–𝑟 ) ≡ const. in some neighbourhood and isotropy implies that
𝜀(𝐄/|𝐄|) ≡ const. so in all directions of the field, the permitivity is
the same. Also the medium in optics is assumed to be non-magnetic
and so 𝜇 ≡ 𝜇0, which is the permeability in vacuum. The applicable
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simplified equations are

∇ ⋅ 𝐄 = 0, ∇ ⋅ 𝐁 = 0,
∇ × 𝐄 = − 𝜕𝑡𝐁, ∇ × 𝐁 = 𝜀𝜇0 𝜕𝑡𝐄. (1.1)

Notice that due to the homogeneity, the permittivity 𝜀 and permeabil-
ity 𝜇, no longer appear in Gauss’s law for 𝐄 and 𝐁 in the simplified
equations.

The Wave Equation for Light

The goal is to transform the equations of 1.1 to the wave equation for
both 𝐄 and 𝐁

∇2𝚿 − 𝜕2
𝑡 𝚿
𝑣2 = 0, (□𝑣𝚿)

where 𝑣 is the waves propagation speed. For 𝐄, this can be done start-
ing from Faraday’s law in the simplified form (Eq. (1.1)) by applying
the curl operation to both sides [4]. Customarily, starting from Fara-[4]: Feynman et al. (2011), Feyn-

man Lectures on Physics, Vol. II: The
New Millennium Edition: Mainly Elec-
tromagnetism and Matter

day’s law, we get for the left side

∇ × (∇ × 𝐄) = ∇(∇ ⋅ 𝐄) − ∇2𝐄 = −∇2𝐄,

where we used, in order, the curl of curl identity and Gauss’s law for
𝐄 and for the right side

−∇ × (𝜕𝑡𝐁) = − 𝜕𝑡(∇ × 𝐁) = − 𝜕𝑡(𝜀𝜇0 𝜕𝑡𝐄) = −𝜀𝜇0 𝜕2
𝑡 𝐄,

where we used the fact that the 𝜕𝑡 operation is scalar (does not intro-
duce ties between the positional dimensions) and therefore the order of
operations can be swapped and Ampère-Maxwell’s law. Putting these
two results together gives the wave equation for 𝐄

∇2𝐄 − 𝜀𝜇0 𝜕2
𝑡 𝐄 = 0. (□𝐄)

An analogous sequence of operations leads to the wave equation for 𝐁

∇2𝐁 − 𝜀𝜇0 𝜕2
𝑡 𝐁 = 0. (□𝐁)

Comparing the general 𝑛-dimensional wave equation (□𝑣𝚿) with the
wave equations □𝐄 and □𝐁, we can determine the propagation speed 𝑣
of the EM wave in the medium as

𝜀𝜇0 = 1/𝑣2 ⟹ 𝑣 = 1√𝜀𝜇0
. (1.2)

This is in accordance with the known value of the speed of light in
vacuum 𝑐 = 1√𝜀0𝜇0

= 299 792 458m/s.

1.3 Solutions to the Wave Equation of
Light

There are two solutions to Equation □𝑣𝚿 that will be of interest to
us. They differ by the shape of the wave-front surface that is produced.
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First we have the spherical wave, that is more aligned with the ap-
prehension of light sources in fluorescent microscopy (FM) in theory
theory as will become apparent. There is a problem with the spheri-
cal wave solution that will be demonstrated, hence, the planar wave
solution will be also derived.

Spherical Wave

Let us consider a solution Ψ to the 3-dimensional wave equation (□𝑣𝚿)
that is dependent only on the radial distance from the
origin 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 and time 𝑡. The Laplace operator ∇2 of Ψ
gives us

∇2Ψ =
3

∑
𝑖=1

𝜕2Ψ(𝑟)
𝜕𝑥2

𝑖
=

3
∑
𝑖=1

𝜕
𝜕𝑥𝑖

(𝜕Ψ(𝑟)
𝜕𝑥𝑖

) =
3

∑
𝑖=1

𝜕
𝜕𝑥𝑖

(𝜕Ψ(𝑟)
𝜕𝑟

𝜕𝑟
𝜕𝑥𝑖

)

=
3

∑
𝑖=1

𝜕
𝜕𝑥𝑖

(𝜕Ψ(𝑟)
𝜕𝑟

𝑥𝑖
𝑟 ) =

3
∑
𝑖=1

𝑥𝑖
𝑟

𝜕2Ψ(𝑟)
𝜕𝑥𝑖 𝜕𝑟 + 𝜕

𝜕𝑥𝑖
(𝑥𝑖

𝑟 )𝜕Ψ(𝑟)
𝜕𝑟

=
3

∑
𝑖=1

(𝑥𝑖
𝑟 )

2 𝜕2Ψ(𝑟)
𝜕𝑟2 + 1

𝑟 (1 − 𝑥2
𝑖

𝑟2 )𝜕Ψ(𝑟)
𝜕𝑟 = 𝜕2Ψ(𝑟)

𝜕𝑟2 + 2
𝑟

𝜕Ψ(𝑟)
𝜕𝑟

= 1
𝑟

𝜕2

𝜕𝑟2 (𝑟Ψ(𝑟)).

If rewrite the wave equation with this result and expand both sides by
𝑟, we get

1
𝑟

𝜕2

𝜕𝑟2 (𝑟Ψ) − 1
𝑣2

𝜕2Ψ
𝜕𝑡2 = 0,

𝜕2

𝜕𝑟2 (𝑟Ψ) − 1
𝑣2

𝜕2𝑟Ψ
𝜕𝑡2 = 0,

∇2(𝑟Ψ) − 1
𝑣2

𝜕2𝑟Ψ
𝜕𝑡2 = 0,

which is the wave equation (□𝑣𝚿) in one dimension for the function 𝑟Ψ.
The solution to the one-dimensional wave equation is in the form the
d’Alembert’s solution

Ψ̃(𝑟, 𝑡) = 𝜙→(𝑟 − 𝑣𝑡) + 𝜙←(𝑟 + 𝑣𝑡). (d’Alembert’s solution)

Of the two solutions, only the outwards propagated component 𝜙→
makes physical sense for a point source generating the spherical wave,
so in the standard result, 𝜙← is omitted by setting it to a zero function
𝜙← ≡ 0. The final spherical solution Ψ∘ for light at the point #–𝑟 =
(𝑥, 𝑦, 𝑧) is

Ψ∘( #–𝑟 , 𝑡) = 𝜙→(| #–𝑟 | − 𝑣𝑡)
| #–𝑟 | . (1.3)

One consideration is left to be discussed about this solution before rein-
terpreting it for the EM field. As you may have noticed in this section,
the notation of Ψ has been used instead of 𝚿. Before pronouncing the
solution as a EM field solution, it is imperative to verify the consistency
of it with Maxwell’s equations, because it is implied that the solution
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to Maxwell’s equations are also EM wave equation solutions, but the
inverse is not true. In fact this solution is a counter example to the
inverse implication, since due to Birkhoff’s theorem, this solution is in
conflict with source-free Maxwell’s equations while assuming that the
solution is non-static, which means 𝑣 ≠ 0 in the terms of the derived
Ψ∘. To see this, let us start with the ansatz of a spherically symmetric
field

𝐄( #–𝑟 , 𝑡) = 𝐸(𝑟, 𝑡) ̂𝐫,
𝐁( #–𝑟 , 𝑡) = 𝐵(𝑟, 𝑡) ̂𝐫,

where ̂𝐫 is the unit vector in the direction of #–𝑟 . Plugging this into the
right sides of Faraday’s and Ampère-Maxwell’s equations gives

∇ × 𝐄 = ∇ × 𝐸(𝑟, 𝑡) ̂𝐫 = #–0 ,
∇ × 𝐁 = ∇ × 𝐵(𝑟, 𝑡) ̂𝐫 = #–0 ,

hence the left sides follow as

− 𝜕𝑡𝐁 = #–0 ,
𝜀𝜇0 𝜕𝑡𝐄 = #–0 ,

so the field is necessarily static for non-zero 𝜀 and 𝜇, which is the only
physical possibility for these quantities. It may be argued that a static
solution, is also a possible solution, but it must be realized, that a
static field implies an energy flux of zero and therefore cannot be a
manifestation of light since no energy is transmitted.

A thought that we went astray with this solutions derivation is wrong
however. Even though the solution is non-physical, it is widely used in
optics, especially in diffraction theory, as an approximation to the true
physical solution to avoid analytical dead-ends in the calculations. To
this purpose, in conclusion, the approximation of the 𝐄 component of
the EM field solution is

𝐸∘( #–𝑟 , 𝑡) =
𝐹(| #–𝑟 | − 𝑡√𝜀𝜇0

)
|𝑟| ,

where 𝐹 ≔ 𝜙→ is a chosen function. An analogous expression is avail-
able for 𝐁.

The interesting observation to be made is that the intensity of the EM
field declines in an inverse proportion to the radial distance 𝑟 from the
source. This can be intuitively realized by considering the fact that the
wave-front surface is growing in a quadratic relation with distance 𝑟
and the energy transmitted by the wave is also in a quadratic relation
to 𝐸. Since the medium is non-dispersive, energy is not lost during the
transmission and 𝐸2 ⋅ 𝑆wave-front ∝ 1(𝑟).

As for the adequacy of the spherical solution compared to the planar
wave solution, we can conceptualize the source of radiation in FM as
an electron of a fluorescent molecule in an excited state falling to the
ground state while releasing a photon of a particular wavelength. Due
to the small size of an atom with the dimensionality in the order of
1Å relative to the dimensionality of the field quantities such as the
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wavelength in the order of 100nm, the source of the field may be
imagined as a point source, which is consistent with the imagination
of the source, causing a spherical wave [5]. [5]: Aguet (2009), Super-Resolution

Fluorescence Microscopy Based on
Physical Models

Planar Wave

For the development of a plane wave, we can benefit by starting with
the solution to the one-dimensional wave (d’Alembert’s solution). Let
us define the unit vector �̂� of direction of propagation of the 𝐄-wave
(|�̂�| = 1) and the wave vector #–𝑘 = 𝑘�̂�. Next let us rewrite Gausses law
for 𝐄 (Eq. (1.1)) in the orthogonal basis (�̂�, �̂�⟂1

, �̂�⟂2
)

∇ ⋅ 𝐄 = 𝜕�̂�(𝐄)�̂� + 𝜕�̂�⟂1
(𝐄)�̂�⟂1

+ 𝜕�̂�⟂2
(𝐄)�̂�⟂2

= 0, (1.4)

where 𝜕�̂� is the spatial partial derivative in the direction of �̂� and (𝐄)�̂�
is the basis vector �̂� component of 𝐄. The assumption that the wave
is propagating in the direction �̂� implies

𝜕�̂�⟂1
(𝐄)�̂�⟂1

= 0,
𝜕�̂�⟂2

(𝐄)�̂�⟂2
= 0,

which when plugged into Equation 1.4 in turn implies

𝜕�̂�(𝐄)�̂� = 0.

If we now consider Ampère-Maxwell’s law of Equation 1.1 and again
assume that the 𝐁-wave is propagating in the direction of �̂�, meaning

𝜕�̂�⟂1
(𝐁)�̂�⟂1

= 0,
𝜕�̂�⟂2

(𝐁)�̂�⟂2
= 0,

and therefore
(∇ × 𝐁)�̂� = 0,

so we obtain that (𝐄)�̂� is constant in time. This implies, that is we as-
sume a dynamic 𝐄-field, (𝐄)�̂� ≡ 0. To put this into words, we can say
that for the propagation of planar waves in the direction �̂�, 𝐄 is per-
pendicular to the direction of propagation, 𝐄 ⟂ �̂�. Since we know that
𝐄 lies in the plane �̂�⟂1

× �̂�⟂2
, we can denote the direction 𝐄/|𝐄| ≕ �̂�

and change reinterpret 𝐄 in the basis (�̂�, �̂�, �̂�⟂). The calculation of
∇×𝐄 is now trivial, as the only non-zero component of 𝐄 is (𝐄)�̂� and
so

(∇ × 𝐄)�̂� = (∇ × 𝐄)�̂� = 0,
(∇ × 𝐄)�̂�⟂

= 𝜕�̂�(𝐄)�̂�.

Now we can see that if 𝐄 is in the direction of �̂� then substituting the
curl of 𝐄 into Faraday’s law (Eq. (1.1))

𝜕𝑡(𝐁)�̂� = 𝜕𝑡(𝐁)�̂� = 0,
𝜕𝑡(𝐁)�̂�⟂

= 𝜕�̂�(𝐄)�̂�,
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and we can again leverage the assumption of a dynamic 𝐁-field and con-
clude that if the wave propagates in the direction �̂�, then the direction
of the 𝐄-field is �̂� and the direction of the 𝐁-field is the perpendic-
ular �̂�⟂. In summary 𝐄 ⟂ 𝐁 ⟂ �̂�. The same argument can be used
to determine the curl ∇ × 𝐁 which results in the singular non-zero
component

(∇ × 𝐁)�̂� = 𝜕�̂�(𝐁)�̂�⟂
= 𝜀𝜇0 𝜕𝑡(𝐄)�̂�.

We have arrived at two equations that tie the 𝐄-field and 𝐁-field to-
gether

𝜕𝑡(𝐁)�̂�⟂
= 𝜕�̂�(𝐄)�̂�, (1.5)

𝜕�̂�(𝐁)�̂�⟂
= 𝜀𝜇0 𝜕𝑡(𝐄)�̂�. (1.6)

To put this all together and finish the planar wave solution we only
need to apply 𝜕�̂� to Equation 1.5 and 𝜕𝑡 to Equation 1.6 and observe
that the right sides of both equations are identical implying the equal-
ity of the left sides

𝜕2
�̂�(𝐄)�̂� − 𝜀𝜇0 𝜕2

𝑡 (𝐄)�̂� = 0. (1.7)

If we make the analogous last step for the 𝐁-field, we get

𝜕2
�̂�(𝐁)�̂�⟂

− 𝜀𝜇0 𝜕2
𝑡 (𝐁)�̂�⟂

= 0. (1.8)

Observing the equations Equation 1.7 and Equation 1.8, it is clear
that they are one-dimensional wave equations and the d’Alembert’s
solution, can be used to specify the form of the fields

(𝐄( #–𝑟 , 𝑡))�̂� = 𝜙𝐄
→(( #–𝑟 )�̂� − 𝑡√𝜀𝜇0

) + 𝜙𝐄
←(( #–𝑟 )�̂� + 𝑡√𝜀𝜇0

)

(𝐁( #–𝑟 , 𝑡))�̂�⟂
= 𝜙𝐁

→(( #–𝑟 )�̂� − 𝑡√𝜀𝜇0
) + 𝜙𝐁

←(( #–𝑟 )�̂� + 𝑡√𝜀𝜇0
).

Based on empirical physical properties of the wave, in contemporary
physics, we omit 𝜙← and are left with the retarded time solutions

(𝐄( #–𝑟 , 𝑡))�̂� = 𝜙𝐄(( #–𝑟 )�̂� − 𝑡√𝜀𝜇0
), (1.9)

(𝐁( #–𝑟 , 𝑡))�̂�⟂
= 𝜙𝐁(( #–𝑟 )�̂� − 𝑡√𝜀𝜇0

). (1.10)

To clean up the notation, we restore the standard Cartesian coordi-
nate system as (�̂�, �̂�, �̂�⟂) = (�̂�, �̂�, ̂𝐳) and 𝐄 = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧), 𝐁 =
(𝐵𝑥, 𝐵𝑦, 𝐵𝑧) and denote the retarded 𝑥-coordinate 𝑥 − 𝑡√𝜀𝜇0

as 𝜉.

This is not the final result though, since se can determine the relation
of 𝜙𝐄 and 𝜙𝐁 by using one of the established equations 1.5 and 1.6.
We first substitute 𝐄 and 𝐁 into the equation 1.5 from equations 1.7
and 1.8

𝜕𝑡𝜙𝐁(𝜉) = 𝜕𝑥𝜙𝐄(𝜉),
which evaluates to

− 1√𝜀𝜇0

d𝜙𝐁

d𝜉 = d𝜙𝐄

d𝜉 ,
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and so with the reminder that √𝜀𝜇0 = 1/𝑣, we can conclude that

𝜙𝐁(𝜉) = −1
𝑣
d𝜙𝐄

d𝜉 , (1.11)

where the constant additive coefficient was omitted similarly as before,
because we are deriving only the dynamic relations and are not inter-
ested in the electro-static and magneto-static fields, since they are not
bearers of energy.
Putting everything together using equations 1.9, 1.10 and 1.11, we get
the EM plane wave

𝐸𝑦( #–𝑟 , 𝑡) = 𝐹(𝑥 − 𝑡√𝜀𝜇0
), (1.12)

𝐵𝑧( #–𝑟 , 𝑡) = 1√𝜀𝜇0
𝐹(𝑥 − 𝑡√𝜀𝜇0

), (1.13)

where 𝐹 ≔ 𝜙𝐄
→ is a chosen function.

A similar note must be made about the validity of this solution as in
Subsection 1.3. Although it is a solution to Maxwell’s equations (Eq.
(1.1)) unlike the spherical wave, there is no physical source that can
generate this exact solution. A possible non-physical source would be
an infinite plane that changes its charge. We use this solution as an
approximation, and a good one undeniably, which upholds the wave-
front shape when the source is far from the assessed location (the far-
field region) and the propagating wave-front can endure its strength
as in the solution, if we are simultaneously far from the source and we
asses the wave-front over a small distance relative to the distance of
the source5. 5: This makes it the relevant solu-

tion, when it comes to astronomy,
where the light comes from far dis-
tances and the relative size of the
telescope is miniscule compared to
them.

Harmonic Waves

Harmonic waves play a special role in the theory of EM field. This is
due to the fact that Maxwell’s equations are linear and therefore, any
function 𝐹 from subsections 1.3 and 1.3 that can be expressed in the
form of harmonics can be expressed in the form of spherical and planar
harmonic waves respectively.
A harmonic plane wave has the form

𝐄( #–𝑟 , 𝑡) = #–𝐸0 𝑒−𝑗(𝜔𝑡− #–𝑘 ⋅ #–𝑟 ),
𝐁( #–𝑟 , 𝑡) = #–𝐵0 𝑒−𝑗(𝜔𝑡− #–𝑘 ⋅ #–𝑟 ),

(1.14)

where the vectors #–𝐸0,
#–𝐵0 and #–𝑘 form an orthogonal bases.
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In the realm of optical microscopy, the pursuit of enhanced spatial
resolution has led to the development of various techniques collec-
tively known as SR microscopy. The central aspect to the term super-
resolution is the ability to surpass the classical established diffraction
resolution limit by means of the technique.

An important fact that should be re-
alized is that that mostly none of the
SR methods described here are useful
in other optical acquisition contexts
then in microscopy. This is due to the
property, that the methods rely on
the ability to closely control the en-
vironment of the observation in var-
ious ways. As an example, SIM is
impossible to mimic, within the con-
text of astronomy because we can not
vary the illumination and in fact do
not observe reflections of or emission
due to illuminating the field.

SR microscopy has been a term and a topic of study for almost half
a century now. In 1978, the first method to be developed, that may
be categorized as a SR method, is the so called 4𝜋M by Christoph
and Thomas Cremer [6]. It rethinks the classical design of sample il-[6]: Cremer et al. (1978), Considera-

tions on a Laser-Scanning-Microscope
with High Resolution and Depth of Eld

lumination and attempts to limit the volume that is excited by the
radiation within the sample space within one acquisition. The light
in the image space is thus reduced to the emission of the fluorescent
molecules within this volume of the sample and a reduction in uncer-
tainty of the location within this volume of the sample is achieved.
By the repetition of these localized acquisitions, it is then possible to
systematically cover the sample space and reconstruct the full sample
estimate based on information from all of the acquisitions. The real-
ization that outperforming the classical diffraction limit by means of a
specialized modality or setup of the microscope is possible resulted in a
rapid pace of innovation and lead to the invention of novel techniques,
altering the way of illuminating the sample and the preparation of the
imaged sample itself.

A major breakthrough was presented in 1995 by J. Guerra, who made
use of a non-physical method to achieve SR in theory by including a
modulation of the transfer function into the acquisition process and
evaluating the effect on the dependence of observed light in the im-
age space on the source signal [7]. Later in 1999 Heintzmann and[7]: Guerra (1995), Super-Resolution

through Illumination by Diffraction-
Born Evanescent Waves

Gustafsson developed a deconvolution based reconstruction algorithm
for Guerra’s method [8]. This change in perspective was also met with[8]: Heintzmann et al. (1999), Later-

ally Modulated Excitation Microscopy:
Improvement of Resolution by Using a
Diffraction Grating

a large number of follow-ups which explored further approaches of
utilizing the concept transfer function manipulation and pre-transfer
inferred response signal control for the purpose of achieving SR.

The culminated effort within the microscopy field lead to numerous
advancements and unprecedented observations mostly in biology. As
a result and a appreciation was the granting of the Nobel Prize in
Chemistry in 2014 shared three scientists who developed the stimulated
emission depletion (STED) method [9].[9]: Weiss (2014), Nobel Prizes for

Super-Resolution Imaging

2.1 Comparison of SR Methods

To this date, there are two major broad approaches of achieving SR
that have been demonstrated in practice [10]. In some modern cases[10]: Lal et al. (2016), Structured Il-

lumination Microscopy Image Recon-
struction Algorithm

a combination of methods one from each of the approach can be used
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alongside each other for achieving a greater resolution than one that
is achievable by using them in isolation. These broad categories are:
localization Concerns with reducing signal from the source structure

to a limited volume or volumes that are sparse within the im-
age plane. This bypasses the resolving limit using employing the
aspect of the sensed signal, that there is assumed to be little
superposition from the individual fluorescent molecules. Lack of
superposition can be used to distinguish individual emitting par-
ticles and if enough photons from one such particle is collected,
its position can be determined with a low uncertainty.

modulation By altering one of the aspect of generation of signal from
the source structure, it induces a superposition of source signals
caused by a range or discrete set of scales within the source
structure. With a prior expectation or design of the set of scales
superposed (aliased) and often by use of more than one such ac-
quisition with different sets of scales admitted or included with
a different factor within the superposition, the scales can be dis-
tinguished and mapped to the original scale of the source by
reconstruction from the individual acquisitions.

Usually a localization based method uses illumination volume reduc-
tion for the purpose of limiting the volume of source structure origi-
nated signal in the sensed signal, it requires scanning or varying the
location of the volume in a different manner in order to make a re-
construction of the full field source signal. This is often at the demise
of temporal resolution or alternatively an acquisition prioritizing tem-
poral speed can severely reduce the resolution gain in the space axes.
In other words, fast localization SR acquisitions usually do not retain
their advertised SR to the extent of still and long lasting acquisitions.
Aforementioned is a substantial case for using modulation based meth-
ods for dynamic sources acquisitions.
The modulation approach is a good fit for a dynamic (video) acquisi-
tion, since the photon efficiency relative to the efficiency of a standard
acquisition is not lowered by a significant amount. That is important
due to the fact that if we want to acquire a live-cell for a period of
time, it is desirable to limit the fluorophore bleaching caused by the
cumulative effect of illumination during this time. A popular choice
for live-cell acquisitions is therefore SIM.
A non-exhaustive table of SR methods is presented in Table 2.1.
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SR
Method

Method
Summary

Resolution Year of
OriginLateral Axial Temporal

FIONA [11]
•widefield
•localization

Labels the sample with a single fluorophore within a
diffraction radius. Collects a sufficient number of pho-
tons from the isolated fluorophores to alleviate location
noise and uses curve fitting to find the center of the
diffraction pattern that is assumed to be the true fluo-
rophore location.

1.5nm N/A 0.5 s 2003

STED [12]
•scanning
•localization

Uses two laser beams for illumination: an excitation
beam and a STED beam. The excitation beam excites
the fluorophore photons and therefore causes fluores-
cence in the sample, while the STED beam, focused
with small lateral offsets, depletes fluorescence in the
outer regions of the excitation spot reducing the vol-
ume where fluorophores are excited.

25nm 100nm 5ms 1994

PALM [13]
•widefield
•localization

Stimulates the fluorophore labels in the sample with
light and switching them from between the states of
emitting and bleached, which is a state due to over ac-
tivation of the fluorophore that wears off with passing
time. This is done in such a manner that the number
of activated fluorophores is low and sparse within the
sample. Similarly to FIONA, this ensures their precise
localization. It enough cycles are performed for a each
set of fluorophores, a full image can be obtained by
stacking the source estimations from each stack.

2nm 10nm 5 s 2006

STORM [14, 15]
•widefield
•localization

The idea is the same as in PALM. Unlike PALM, the
sample is stained with specialized dyes that are photo-
switchable. This means unlike PALM no reliance is
placed on the time it takes for the fluorophores to re-
vive from the bleached state and the switching may be
done faster to the benefit of the temporal resolution.

4nm 10nm 1 s 2006

4𝜋M [6]
•scanning
•localization

Uses the two opposing objective lenses focused on the
same location within the sample. Further more, it uses
a laser that is via reflection directed from both sides
precisely aligned in relation to the sample and the re-
flected and emitted light can be collected leading to
the ability of detecting the depth of the fluorophores
by the effect of assessing, where relative to the laser
beam wavelength the emission happens with better res-
olution. It improves only the axial resolution (using a
classical wide-field microscope it is about 500 nm).

180nm 100nm 50ms 1978

SIM [7, 8, 16]
•widefield
•modulation

An illumination with non-uniform (modulated) inten-
sity is used with sub-diffraction resolution lateral vari-
ations. These variations modify the signal produced by
the sample structure and shifts some of its variations
that are too rapid for the diffraction-limit and would
not ”survive” the optical system into lesser ones. This
leads to aliasing within the sensed signal. It is possible
to determine and the original locations of the varia-
tions, by an acquisition of multiple modulations and a
reconstruction can be performed.

40nm 300nm 100ms 1995

Table 2.1: The most prolificSR methods and their approximate optimal resolutions achievable in each axis as of January
2024. Keep in mind that the resolutions listed are optimal and are not, and often can not, be achieved in one acquisition,
because there is in most cases a compromise to be made. If the resolving power for a single axis is optimized, the others suffer
a loss in attainable resolution. An extreme example of this is PALM, where the maximum frame rate is about 12 min−1 but
an acquisition with the best lateral resolution of 2 nm can take up to 12 h. Widefield signifies that the acquisition of the full
frame is performed in one take and scanning that the acquisition of the full frame requires the accumulation of acquisition
of multiple patches of different volumes of the sample space. Besides the impressive resolutions that are achieved by the SR
methods, it speaks volumes about their inventors that they came up with some of the cheekiest acronyms widely used in
contemporary science of today.
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2.2 Principle of SIM

The principle which SIM and other modulation based SR methods
stand on will be demonstrated by harmonic SIM. Harmonic SIM al-
ters the signal generated by the source structure via non-uniform illu-
mination. The illumination intensity takes the form of a 2D harmonic
function.

As a first step, let us consider, how a harmonic may affect aliasing
of a signal in a one-dimensional example. Let us have a model source
structure, i.e. what we want to estimate, to be

𝑠(𝑥) = cos(𝜔𝑥).

Now, we want to imitate the illumination. We can set the ”illumina-
tion” as a harmonic in analog to the 2D harmonic in SIM that we want
to get the intuition for

𝑖(𝑥) = cos(𝛼 ⋅ 𝜔𝑥),

where 𝛼 is a constant. If we want to imitate SIM 𝛼 ≈ 1 but 𝛼 ≠ 1. To
imitate the optical system, due to its linearity, it is adequate to perform
the transfer of the ”illumination”, we multiply the source structure by
it

𝑔(𝑥) = 𝑠(𝑥) ⋅ 𝑖(𝑥) = cos(𝜔𝑥) ⋅ cos(𝛼𝜔𝑥)

= cos(( 𝛼+1
2 − 𝛼−1

2 ) ⋅ 𝜔𝑥) ⋅ cos(( 𝛼+1
2 + 𝛼−1

2 ) ⋅ 𝜔𝑥)

= cos((1 + 𝛼) ⋅ 𝜔𝑥) + cos((𝛼 − 1) ⋅ 𝜔𝑥)
2

We can see from the above that some of the scales of variation of 𝑠1

1: Here, variations are not in the lit-
eral sense of the mathematics defini-
tion but rather intuitive variations as
can be seen in Figure 2.1. Later in
the 2D case, we will do all the op-
erations in Fourier space and the so
called scales of variation will be fre-
quencies for us and the notion will
stand on a firmer basis.

were approximately doubled (𝛼 ≈ 1) but some on the other hand are
very close to 0. This is the idea behind SIM, where the variation that
is lowered can now be observed.

Figure 2.1: We can see how the mul-
tiplication with the ”illumination” af-
fects the signal 𝑔 that is generated.
Here, 𝛼 = 1.1. It is clear from the
graph, what we intuitively mean by
the variation.Even better than observing the exact case of a 1D imitation of SIM

is to observe a physical analog in acoustics, that is often observed in
real life. If two harmonic acoustic waves with similar frequencies are
superposed a beat pattern emerges. The real life use of this phenomenon
is in sirens on an ambulance or on a police vehicle. If we listen to them
closely, it is possible to distinguish the high frequency harmonics and
the low frequency beat sound. A depiction of this phenomenon can be
seen in Figure 2.2.

Figure 2.2: Acoustic beat pattern
that emerges when two close fre-
quency harmonics are superposed.

There is also an illustrative phenomenon that is commonplace in the
real world of the above concept from 1D in the 2D of SIM. It is in
the form of moiré fringes (or patterns). They are present when two
high-frequency patterns are superposed. Examples of this in common
use (Fig. 2.3) are:

▶ A news anchorman with a striped shirt on an old low-resolution
television. The patterns that are superposed are the stripes on
the shirt and the scan-lines of the television.

▶ A close-up photo of an LCD or LED screen monitor. The pattern
are the pixels rows and columns of the camera and the monitor.
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Scale of the patterns change when distance of the camera from
the monitor.

▶ The citizenship ID card or a banknote, where moiré patterns are
intensionally incorporated as a safety feature of the print.

Figure 2.3: Moiré fringes are present
when two high-frequency patterns
are superposed.

(courtesy of Emin Gabrielyan)

2.3 SIM

The aliasing in harmonic SIM is better presented in the Fourier domain.
We will denote the Fourier images of functions by capital letters. That
is, we denote the Fourier image of the source 𝑠 as F [𝑠] = 𝑆, the
illumination 𝑖 as F [𝑖] = 𝐼 and so on. This notation is also used in the
experiment part.

The harmonic SIM illumination pattern as already mentioned is the
harmonic cosine function. In 2D, this is

𝑖(𝑚, #–𝑘 𝑖,𝜙)( #–𝑟 ) = 1 + 𝑚
2 cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 + 𝜙),

where 𝑚, #–𝑘 𝑖 and 𝜙 are constant parameters modulation, phase-shift (or
orientation) and phase-offset of the illumination pattern respectively.
The Fourier image of a 2D harmonic function is

F [cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 )]( #–𝑘 ) = 1
2F [exp(2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 ) + exp(−2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 )]( #–𝑘 )

= 1
2 ∬

ℝ2
(exp(2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 ) + exp(−2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 ))

⋅ exp(−2𝜋𝑗 #–𝑘 ⋅ #–𝑟 ) d #–𝑟

= 1
2 ∬

ℝ2
exp(2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 ) ⋅ exp(−2𝜋𝑗 #–𝑘 ⋅ #–𝑟 ) d #–𝑟

+ 1
2 ∬

ℝ2
exp(−2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 ) ⋅ exp(−2𝜋𝑗 #–𝑘 ⋅ #–𝑟 ) d #–𝑟

= F [exp(2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 )]( #–𝑘 ) + F [exp(−2𝜋𝑗 #–𝑘 𝑖 ⋅ #–𝑟 )]( #–𝑘 )
2

= 1
2 𝛿( #–𝑘 + #–𝑘 𝑖) + 1

2 𝛿( #–𝑘 − #–𝑘 𝑖),

which means that the Fourier image of the illumination pattern, due
to linearity of F is

F [𝑖(𝑚, #–𝑘 𝑖,𝜙)( #–𝑟 )]( #–𝑘 ) = 𝐼(𝑚, #–𝑘 𝑖,𝜙)(
#–𝑘 ) = 𝑚𝑒−𝑗𝜙

4 𝛿− #–𝑘 𝑖
+ 𝛿 + 𝑚𝑒𝑗𝜙

4 𝛿+ #–𝑘 𝑖
.

We assume that the relation between excitation illumination intensity 𝑖
and the emission intensity of a single fluorophore is linear. The relation
between the emission intensity 𝑔 at a point and the source structure 𝑠
(i.e. the density of fluorescent particles) times the excitation intensity
is also linear. In fact we assume that the multiplicative coefficient is
1 without loss in generality since we are not interested in the actual
number of photons produced, but instead the structure variations and
so, in the spatial domain

𝑔( #–𝑟 ) = 𝑠( #–𝑟 ) ⋅ 𝑖( #–𝑟 ).
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We know that the in the Fourier domain, this translates to the convo-
lution, i.e.

𝐺( #–𝑘 ) = 𝑆( #–𝑘 ) ∗ 𝐼( #–𝑘 ).

From this, it is clear that the structured illumination of the sample,
induces spatial frequency aliasing of the sample source 𝑠 in the 𝑔 sig-
nal. This signal is then propagated through the optical system via the
transfer function to produce the sensed signal 𝑓 . In the Fourier domain,
this is expressed by

𝐹( #–𝑘 ) = (𝑆( #–𝑘 ) ∗ 𝐼( #–𝑘 )) ⋅ 𝐻( #–𝑘 ).

The reconstruction procedure then deals with antialiasing the frequen-
cies of the sensed 𝐹 and placing them into their correct locations within
the reconstructed ̂𝑆. From ̂𝑆, we can then obtain the reconstructed
spatial source as

F −1[ ̂𝑆] = ̂𝑠.
This concept is further explained and performed in Chapter 3.

2.4 Discussion

Due to the fact that the only difference between the SIM based acqui-
sition and a regular acquisition is the non-uniform illumination, SIM
is composable with various setup modalities, available for regular view-
field microscopy. For example, it can be used in combination with total
internal reflection fluorescence microscopy (TIRFM), where noise can
be reduced by reducing the illumination of the sample to a narrow
axial slice. The data that we are working with in the later chapters is
acquired with this modality.

We are also not limited to the case of harmonic illumination. There
have been successful SIM demonstrations with apriori unknown speckle
patterns, with only the singular condition, of summing into a uniform
intensity [17, 18]. [17]: Yeh et al. (2017), Structured Il-

lumination Microscopy with Unknown
Patterns and a Statistical Prior
[18]: Mudry et al. (2012), Struc-
tured Illumination Microscopy Using
Unknown Speckle Patterns

It is also not limited to lateral resolution enhancement. The harmonic
patterns that we are using can also be expressed for axial slices that
are not in one the focal plane and the 3D optical transfer function
(OTF) can be used in the reconstruction to enhance the image resolu-
tion in both axial and lateral directions [16]. This approach requires [16]: Gustafsson et al. (2008), Three-

Dimensional Resolution Doubling in
Wide-Field Fluorescence Microscopy by
Structured Illumination

15 acquisitions with different parameters to in the reconstruction com-
pared with 9 frame acquisitions of the standard Wiener filter based
reconstruction for lateral resolution gain.

We are also not limited to a mere resolution doubling, as can be ob-
served from Table 2.1 [19]. It is essential though to realize that the [19]: Gustafsson (2005), Nonlinear

Structured-Illumination Microscopy:
Wide-field Fluorescence Imaging with
Theoretically Unlimited Resolution

harmonic illumination pattern is limited in the intensity variation fre-
quency similarly by diffraction similarly to the wide way the optical
system limits the resolution by diffraction2. This problem is overcome 2: Thus 𝛼 ≈ 1 in Section 2.2 in not

only the best option from the res-
olution gain standpoint, but also a
forced necessity in the SIM realiza-
tion.

by utilization of the non-linearity of the relation between excitation
and emission near the saturation point of the fluorophores. A non-
linearity in the generation of photons by the fluorophores can be mod-
elled and is desirable in this case, because it enables us to induce higher
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frequencies. Let 𝐼em = 𝐼em(𝐼ex) be the known non-linear relationship,
where 𝐼em is the emission intensity and 𝐼ex is the excitation intensity.
If we have the modulation 𝑚 of 𝐼ex, such that the peak intensities of
𝐼ex are above the saturation point of the fluorophores, we can express
the relation 𝐼em(𝐼ex( #–𝑟 )) by the sum of its harmonic components at a
Fourier series. The frequency components of the source 𝑠 corresponding
to the Fourier series components of 𝐼em(𝐼ex( #–𝑟 )), including the higher
frequencies than the ones included in the regular SIM, are aliased in
the sensed image 𝐹 . By multiple acquisitions and by using the calcu-
lated Fourier series coefficients, a chosen number of components can
be linearly separated similarly as in Chapter 3, and the reconstruction

̂𝑆 can be assembled from these components. If you think about the
aforementioned procedure, the lateral resolution that can be achieved
is theoretically unlimited. What is the problem3? If we were to ex-3: There must be one, because the

prospect of unlimited resolution is
unthinkable.

pand the relation 𝐼em(𝐼ex( #–𝑟 )) into its Fourier series, we would observe
that the higher of the harmonic component 𝜁𝑘( #–𝑟 ) the lower the cor-
responding coefficient 𝜌𝑘 and at some point, the component would
become undistinguishable from the photon noise. This approach has
also been implemented in combination with the photo-switchable dyes
from STORM, which achieved the lateral resolution of 50nm [20].[20]: Rego et al. (2012), Nonlin-

ear Structured-Illumination Microscopy
with a Photoswitchable Protein Reveals
Cellular Structures at 50-Nm Resolu-
tion
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It was laid-out in the theory part, how to achieve introducing higher
frequencies in the output image, which would be otherwise lacking in
the regular wide-field microscope acquisition outputs. The process of
reconstruction concerns with

i. determining the powers of these aliased frequencies and
ii. mapping their positions so that they are at the correct corre-

sponding locations in the reconstructed image.
If everything is done correctly, it is possible to recover all the additional
information from the newly introduced frequencies in the estimate of
the source signal.
There is a multitude of approaches for performing these tasks, each of
which has its own benefits and drawbacks. It is possible to categorise
them into three broad categories based on the underlining theory that
is used, namely:
(a) Wiener filter based,
(b) inversion/optimization based and
(c) machine learning based.

At the input of our reconstruction are 9 LR1 images acquired with 31: In the following text, sensed im-
ages (i.e. signal that we measure
at the sensor) will be called a low-
resolution (LR) image and the re-
constructed image will be called a
high-resolution (HR) image. It is im-
portant to remember throughout the
text that when talking about the
sampled (discrete) LR image, it has
different pixel dimensions (sampling
rate) from the HR image.

orientations (phase-shifts) that are spaced by approximately 2𝜋/3 to
maximize information gain in the reconstructed image and every ori-
entation is acquired with 3 phase-offsets (Fig. 3.2). The acquisition is
made in an orientation-major fashion, meaning that all LR images of
the same orientation are sensed before changing to the next orienta-
tion.
For most methods from the first two categories it is necessary to es-
timate some or all of the illumination pattern parameters of the LR
images prior to the reconstruction. There again are many possible esti-
mation algorithms relying on various assumptions, which are beneficial
for acquisitions with specific properties, importantly differing in their
robustness to noise contained in the LR images.
First, one such estimation sequence for determining the parameters,
that has been tested to work well for the data we are working with,
will be described (Sec. 3.1). The following sections will demonstrate
the Wiener filter based approach (Sec. 3.2) and then the inversion/op-
timization based approach (Sec. 3.3). Lastly, some of the limitations
and benefits of all three approaches will be discussed.

Figure 3.1: The OTF model of the
optical system.

In this chapter, we will be using a model OTF (Fig. 3.1) supplied by
the assembler of the microscope. It is derived from the ideal circular
aperture OTF model with a curvature degradation of 𝛼 = 0.9. The
formula for the OTF is

𝐻( #–𝑘 ) = 2
𝜋

⎛⎜
⎝
arccos( | #–𝑘 |

2𝑘0
) − | #–𝑘 |

2𝑘0
√1 − | #–𝑘 |2

4𝑘2
0

⎞⎟
⎠

⋅ 𝛼| #–𝑘 |/2𝑘0 ,
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Figure 3.2: Acquisitions of 9 wide
field images with harmonic patterned
illuminations. The orientations are
labelled 𝑛 = 1, 2, 3 and the phases
𝜙𝑖 = 𝜙1, 𝜙2, 𝜙3. The order of acquisi-
tion is row-major in this figure.

where 𝑘0 is the cut-off frequency of the OTF and for 𝜌 the pupil ra-
dius the emission wavelength 𝜆em = 488 nm, the distance between the
entrance pupil and the focal plane 𝑓𝑅 and the numerical aperture of
the objective NA is

𝑘0 = 𝜌
𝜆em ⋅ 𝑓𝑅

= 2NA
𝜆em

.

3.1 Parameter Estimation

The general form of the LR image illumination patterns in one orien-
tation, denoted 𝑖𝜙1

, 𝑖𝜙2
and 𝑖𝜙3

, that are at the input of the Wiener
filter reconstruction is

𝑖𝜙( #–𝑟 ) = 1 + 𝑚
2 cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 + 𝜙), (3.1)

where the phases 𝜙1 ≠ 𝜙2 ≠ 𝜙3 and #–𝑘 𝑖 is the wave vector of the illu-
mination pattern. An assumption that is made in the our acquisition
is that the phases differ by 2𝜋/3, that is

𝜙0 ≔ 𝜙1 = 𝜙2 − 2𝜋/3 = 𝜙3 − 4𝜋/3.

This assumption is based on the method that is employed for the gen-
eration of the illumination patterns, which should approximately guar-
antee this. Equivalently, due to the 2𝜋 period of the cos(𝑥) function
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in Equation 3.1, we adopt the notation

𝑖𝜙1
= 𝑖𝜙0

≕ 𝑖0,
𝜙− ≔ 𝜙0 − 2𝜋/3 & 𝑖𝜙3

= 𝑖𝜙−
≕ 𝑖−,

𝜙+ ≔ 𝜙0 + 2𝜋/3 & 𝑖𝜙2
= 𝑖𝜙+

≕ 𝑖+.

As was demonstrated in the theory part, the acquisition carried out
with an illumination pattern 𝑖𝜙 leads to the sensed LR image in the
Fourier domain 𝐹𝜙 ≔ F [𝑓𝜙] being

𝐹𝜙 = F [𝑖𝜙 ⋅ 𝑠] ⋅ 𝐻 + Ν = (𝐼𝜙 ∗ 𝑆) ⋅ 𝐻 + Ν

= ((𝑚𝑒−𝑖𝜙

4 𝛿− #–𝑘 𝑖
+ 𝛿 + 𝑚𝑒𝑖𝜙

4 𝛿+ #–𝑘 𝑖
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝜙

∗𝑆) ⋅ 𝐻 + Ν, (3.2)

where 𝑠/𝑆 is the source signal (i.e. the true structure), 𝐻 is the OTF
of the imaging system and Ν is noise in the Fourier domain. It can be
observed from Equation 3.2, that the sensed LR image contains 3 bands
(components) of aliased signal frequencies with frequency shifts of − #–𝑘 𝑖,
#–0 and + #–𝑘 𝑖. We can write the three acquisitions in one orientation as

⎛⎜⎜⎜
⎝

𝐹𝜙−

𝐹𝜙0

𝐹𝜙+

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝑒 +2𝜋𝑖
3 1 𝑒 −2𝜋𝑖

3

1 1 1
𝑒 −2𝜋𝑖

3 1 𝑒 +2𝜋𝑖
3

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑚
4 𝑒−𝑖𝜙0 ⋅ 𝐶− #–𝑘 𝑖

𝐶 #–0
𝑚
4 𝑒+𝑖𝜙0 ⋅ 𝐶+ #–𝑘 𝑖

⎞⎟⎟⎟
⎠

+
⎛⎜⎜⎜
⎝

𝑁𝜙−

𝑁𝜙0

𝑁𝜙+

⎞⎟⎟⎟
⎠

, (3.3)

with the notation

⎛⎜⎜⎜
⎝

𝐶− #–𝑘 𝑖

𝐶 #–0
𝐶+ #–𝑘 𝑖

⎞⎟⎟⎟
⎠

( #–𝑘 ) ≔ 𝐻( #–𝑘 )
⎛⎜⎜⎜
⎝

𝛿− #–𝑘 𝑖
∗ 𝑆

𝑆
𝛿+ #–𝑘 𝑖

∗ 𝑆

⎞⎟⎟⎟
⎠

( #–𝑘 ) = 𝐻( #–𝑘 ) ⎛⎜⎜
⎝

𝑆( #–𝑘 + #–𝑘 𝑖)
𝑆( #–𝑘 )

𝑆( #–𝑘 − #–𝑘 𝑖)
⎞⎟⎟
⎠

. (3.4)

Phase-shift Estimate

First of the parameters that must be estimated is the phase-shift (i.e.
wave vector of the illumination pattern) #–𝑘 𝑖. First a separation of the
shifted bands is performed while keeping the multiplicative coefficients22: The reference phase-offset 𝜙0 is

yet to be determined. 𝑚
4 𝑒−𝑖𝜙0 and 𝑚

4 𝑒+𝑖𝜙0 . This can be done by solving the linear system in
Equation 3.3 for

⎛⎜⎜⎜
⎝

̃𝐶− #–𝑘 𝑖

𝐶 #–0
̃𝐶+ #–𝑘 𝑖

⎞⎟⎟⎟
⎠

≔
⎛⎜⎜⎜
⎝

𝑚
4 𝑒−𝑖𝜙0 ⋅ 𝐶− #–𝑘 𝑖

𝐶 #–0
𝑚
4 𝑒+𝑖𝜙0 ⋅ 𝐶+ #–𝑘 𝑖

⎞⎟⎟⎟
⎠

, (3.5)

with disregard for noise. For the invertible symmetric matrix

�̃� ≔ ⎛⎜⎜
⎝

𝑒 +2𝜋𝑖
3 1 𝑒 −2𝜋𝑖

3

1 1 1
𝑒 −2𝜋𝑖

3 1 𝑒 +2𝜋𝑖
3

⎞⎟⎟
⎠

,
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it is best to find �̃�−1 using Cramer’s rule, since many of the minors
turn out to be equivalent

�̃�−1 =
⎛⎜⎜⎜⎜⎜
⎝

∣ �̃�22 �̃�23
�̃�32 �̃�33

∣ −∣ �̃�21 �̃�23
�̃�31 �̃�33

∣ ∣ �̃�21 �̃�22
�̃�31 �̃�32

∣
−∣ �̃�12 �̃�13

�̃�32 �̃�33
∣ ∣ �̃�11 �̃�13

�̃�31 �̃�33
∣ −∣ �̃�11 �̃�12

�̃�31 �̃�32
∣

∣ �̃�12 �̃�13
�̃�22 �̃�23

∣ −∣ �̃�11 �̃�13
�̃�21 �̃�23

∣ ∣ �̃�11 �̃�12
�̃�21 �̃�22

∣

⎞⎟⎟⎟⎟⎟
⎠

T

⋅ 1
|�̃�|

= ⎛⎜⎜
⎝

𝑒 +2𝜋𝑖
3 −2 sin( +2𝜋

3 ) −𝑒 −2𝜋𝑖
3

𝑒 +2𝜋𝑖
3 2 sin( +2𝜋

3 ) 𝑒 +2𝜋𝑖
3

−𝑒 −2𝜋𝑖
3 −2 sin( +2𝜋

3 ) 𝑒 +2𝜋𝑖
3

⎞⎟⎟
⎠

T

⋅ 1
6 sin( −2𝜋𝑖

3 )

= ⎛⎜⎜
⎝

−1
4

√
3 + 𝑖

4
−1

4
√

3 + 𝑖
4

−1
4

√
3 − 𝑖

4
− 1

2
1
2 − 1

2−1
4

√
3 − 𝑖

4
−1

4
√

3 + 𝑖
4

−1
4

√
3 + 𝑖

4

⎞⎟⎟
⎠

.

Finally, we have

⎛⎜⎜⎜
⎝

̃𝐶− #–𝑘 𝑖

𝐶 #–0
̃𝐶+ #–𝑘 𝑖

⎞⎟⎟⎟
⎠

( #–𝑘 ) ≈ �̃�−1 ⋅ ⎛⎜⎜
⎝

𝐹𝜙−
𝐹𝜙0
𝐹𝜙+

⎞⎟⎟
⎠

( #–𝑘 ). (3.6)

It is assumed that there is some overlap of the components 𝐶 #–0 with
both 𝐶− #–𝑘 𝑖

and 𝐶+ #–𝑘 𝑖
within the support of the OTF3. Accordingly, 3: Unfortunately, there is an inverse

relationship between how large the
overlapping area is (therefore how ro-
bust the estimation is against noise)
and the maximum achievable resolu-
tion, because, the larger the norm
of #–𝑘 𝑖 is, the higher the maximum
aliased frequency of the component,
but the lower the overlap with the
central component 𝐶 #–0 . Ultimately,
most acquisitions using a shift esti-
mation based on the cross-correlation
make a compromise of these two ef-
fects and the phase-shift is placed ap-
proximately at 0.95 of the OTF cut-
off frequency.

estimate of #–𝑘 𝑖 is performed using cross-correlation [21]

[21]: Huang et al. (2018), Fast, Long-
Term, Super-Resolution Imaging with
Hessian Structured Illumination Mi-
croscopy

𝒞+ #–𝑘 𝑖
( #–𝑝 ) = ∑

#–𝑘
(𝐻( #–𝑘 + #–𝑝 )𝐶 #–0 ( #–𝑘 )) ⋅ (𝐻( #–𝑘 ) ̃𝐶+ #–𝑘 𝑖

( #–𝑘 + #–𝑝 ))

= 𝑚
4 𝑒+𝜙0 ∑

#–𝑘
𝐻( #–𝑘 + #–𝑝 )𝐻( #–𝑘 )𝑆( #–𝑘 )

⋅ 𝐻( #–𝑘 )𝐻( #–𝑘 + #–𝑝 )𝑆( #–𝑘 − #–𝑘 𝑖 + #–𝑝 )

= 𝑚
4 𝑒+𝜙0 ∑

#–𝑘
𝐻2( #–𝑘 + #–𝑝 )𝐻2( #–𝑘 )𝑆( #–𝑘 )𝑆( #–𝑘 − #–𝑘 𝑖 + #–𝑝 ).

To make the estimate more robust to noise, we can instead use both
components in the cross-correlation

𝒞( #–𝑝 ) = ∑
#–𝑘

(𝐻( #–𝑘 + #–𝑝 )𝐶 #–0 ( #–𝑘 )) ⋅ (𝐻( #–𝑘 ) ̃𝐶+ #–𝑘 𝑖
( #–𝑘 + #–𝑝 ))

+ ∑
#–𝑘

(𝐻( #–𝑘 − #–𝑝 )𝐶 #–0 ( #–𝑘 )) ⋅ (𝐻( #–𝑘 ) ̃𝐶− #–𝑘 𝑖
( #–𝑘 − #–𝑝 )).

(3.7)

We see from Equation 3.7 that 𝒞 is maximized, when the source signal
arguments match,

𝑆( #–𝑘 ) = 𝑆( #–𝑘 − #–𝑘 𝑖 + #–𝑝 ) ⟹ #–𝑘 𝑖 = #–𝑝 ,

and consequently the estimate can be made by maximizing the cross-
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correlation over values of #–𝑝

̂#–𝑘 𝑖 = argmax
#–𝑝

𝒞( #–𝑝 ). (3.8)

In practice, we cannot evaluate the functions 𝐶− #–𝑘 𝑖
( #–𝑘 ) and 𝐶+ #–𝑘 𝑖

( #–𝑘 )
directly for an arbitrary value of #–𝑞 = #–𝑘 + #–𝑝 / #–𝑞 = #–𝑘 − #–𝑝 , since they
are computed from the sampled, LR images. The solution to this is to
evaluate them for the closest sampled frequency4 [ #–𝑞 ] and performing4: The closest reciprocal of a multi-

ple of the LR image sampling step
(i.e. pixel size).

a shift by ( #–𝑞 − [ #–𝑞 ]) using the Fourier shift theorem.

Phase-Offset and Modulation Estimate

If we expand the components ̃𝐶− #–𝑘 𝑖
and 𝐶 #–0 using Equation 3.3 and

Equation 3.5 we get

̃𝐶− #–𝑘 𝑖
( #–𝑘 ) = 𝑚𝑒−𝑖𝜙0

4 𝐶− #–𝑘 𝑖
= 𝑚𝑒−𝑖𝜙0

4 𝐻( #–𝑘 )𝑆( #–𝑘 + #–𝑘 𝑖),

𝐶 #–0 ( #–𝑘 ) = 𝐻( #–𝑘 )𝑆( #–𝑘 ).

We see that they differ only by the phase-shift #–𝑘 𝑖 and the complex co-
efficient 𝑚𝑒−𝑖𝜙0/4. Using the phase-shift estimate ̂#–𝑘 𝑖 ≕ #–𝑘 𝑖, estimates
of the source signal 𝑆( #–𝑘 ) and can be made from both components

̃̂𝑆− #–𝑘 𝑖
( #–𝑘 ) = 𝑚𝑒−𝑖𝜙0

4
̂𝑆− #–𝑘 𝑖

( #–𝑘 ) = 𝑚𝑒−𝑖𝜙0

4 (
̃𝐶− #–𝑘 𝑖

( #–𝑘 − #–𝑘 𝑖)
𝐻( #–𝑘 − #–𝑘 𝑖)

),

̂𝑆 #–0 ( #–𝑘 ) = 𝐶 #–0 ( #–𝑘 )
𝐻( #–𝑘 )

.

Using complex linear regression from values in the intersection of
supp𝐻( #–𝑘 − #–𝑘 𝑖) and supp𝐻( #–𝑘 ), it is then possible to estimate �̃�/4 ≔
𝑚𝑒−𝑖𝜙0/4 as

Ω = supp𝐻( #–𝑘 − #–𝑘 𝑖) ∩ supp𝐻( #–𝑘 )

̂�̃� =
4 ⋅ ∑ #–𝑘 ∈Ω( ̃̂𝑆− #–𝑘 𝑖

( #–𝑘 ))
∗

⋅ ̂𝑆 #–0 ( #–𝑘 )

∑ #–𝑘 ∈Ω
̂𝑆2
#–0 ( #–𝑘 )

.

The modulation factor and the phase-offset estimates are consequently

�̂� = | ̂�̃�| & ̂𝜙0 = arg( ̂�̃�).

3.2 Wiener filter Reconstruction

The Wiener filter approach consists of:

i. separation of the aliased components

(𝐹 𝑛
𝜙𝑛−

, 𝐹 𝑛
𝜙𝑛

0
, 𝐹 𝑛

𝜙𝑛
+
)

𝑛∈[3]
↦ (𝐶𝑛

− #–𝑘 𝑛
𝑖
, 𝐶𝑛

#–0 , 𝐶𝑛
+ #–𝑘 𝑛

𝑖
)

𝑛∈[3]
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ii. shifting the components to their corresponding locations within
the HR image5 5: In practice the components, when

shifted, are placed within the HR im-
age’s grid (in the Fourier domain).
We are working with a sensor that
samples 512 × 512 pixels so these
are the dimensions of the LR sensed
images that are due to the imaging
equipment. The dimensions of the
output HR images are not predeter-
mined or restricted by any external
constraints and instead are a choice
that is necessary to make. There is
no reason to make the dimensions un-
necessarily high since the amount of
information in the reconstructed im-
age is constant for any choice that is
greater than the Shannon sampling
rate of the reconstructed ̂𝑠( #–𝑟 ). As-
suming that the LR images are al-
ready sensed with a sampling rate
above the Shannon threshold, we can
set the HR image sampling rate to
twice that of the LR images since
the maximum theoretical enhance-
ment in physical resolution (encap-
sulated information gain) for a recon-
struction with linear SIM is 2×. With
this in mind, the target dimensions
of the reconstruction that we use is
1024 × 1024.

(𝐶𝑛
− #–𝑘 𝑛

𝑖
, 𝐶𝑛

#–0 , 𝐶𝑛
+ #–𝑘 𝑛

𝑖
)

𝑛∈[3]
↦ (𝐶𝑛′

− #–𝑘 𝑛
𝑖
, 𝐶𝑛′

#–0 , 𝐶𝑛′

+ #–𝑘 𝑛
𝑖
)

𝑛∈[3]

iii. determining the OTF of the mapped components and the HR
image

(𝐶𝑛′

− #–𝑘 𝑛
𝑖
, 𝐶𝑛′

#–0 , 𝐶𝑛′

+ #–𝑘 𝑛
𝑖
)

𝑛∈[3]
↦ (𝐻𝑛′

− #–𝑘 𝑛
𝑖
, 𝐻𝑛′

#–0 , 𝐻𝑛′

+ #–𝑘 𝑛
𝑖
)

𝑛∈[3]

iv. application of the Wiener filter to the mapped components

(𝐶𝑛′

− #–𝑘 𝑛
𝑖
, 𝐶𝑛′

#–0 , 𝐶𝑛′

+ #–𝑘 𝑛
𝑖
)

𝑛∈[3]
, (𝐻𝑛′

− #–𝑘 𝑛
𝑖
, 𝐻𝑛′

#–0 , 𝐻𝑛′

+ #–𝑘 𝑛
𝑖
)

𝑛∈[3]
↦ ̂𝑆.

Separation of Components (i.)

The procedure for Item i. was already described in Subsection 3.1.
At this moment, however, we have the estimates of the phase-offsets

The necessity of the separation of
components is one of the major draw-
backs for the Wiener filter approach,
since it requires the acquisition of
9 LR images. We used all of the 9
LR images for the parameter estima-
tion (Sec. 3.1), but if the parameters
where known as a consequence to the
method of acquisition, or they where
estimated using a lower number of
LR images, it wouldn’t be possible
to perform the reconstruction using
the Wiener filter approach. It would
however be possible to use the other
two methods.

𝜙−, 𝜙0, 𝜙+ and the modulations 𝑚, therefore, we use them to separate
the weighted components 𝐶− #–𝑘 𝑖

, 𝐶 #–0 and 𝐶 #–𝑘 𝑖
. The linear combination

matrix is now

𝑀(𝑚, 𝜙0) =
⎛⎜⎜⎜
⎝

𝑚
4 𝑒 +2𝜋𝑖

3 −𝑖𝜙0 1 𝑚
4 𝑒 −2𝜋𝑖

3 +𝑖𝜙0

𝑚
4 𝑒−𝑖𝜙0 1 𝑚

4 𝑒+𝑖𝜙0

𝑚
4 𝑒 −2𝜋𝑖

3 −𝑖𝜙0 1 𝑚
4 𝑒 +2𝜋𝑖

3 +𝑖𝜙0

⎞⎟⎟⎟
⎠

= �̃� ⋅ ⎛⎜⎜
⎝

𝑚𝑒−𝑖𝜙0
4 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 𝑚𝑒+𝑖𝜙0

4

⎞⎟⎟
⎠

,

and 𝑀−1 is

𝑀−1(𝑚, 𝜙0) = ⎛⎜⎜
⎝

4𝑒+𝑖𝜙0
𝑚 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 4𝑒−𝑖𝜙0

𝑚

⎞⎟⎟
⎠

⋅ �̃�−1

=
⎛⎜⎜⎜
⎝

( −1√
3 + 𝑖) ⋅ 𝑒+𝑖𝜙0

𝑚
−1

4
√

3 + 𝑖
4 ( −1√

3 − 𝑖) ⋅ 𝑒−𝑖𝜙0
𝑚

− 2𝑒+𝑖𝜙0
𝑚

1
2 − 2𝑒−𝑖𝜙0

𝑚
( −1√

3 − 𝑖) ⋅ 𝑒+𝑖𝜙0
𝑚

−1
4

√
3 + 𝑖

4 ( −1√
3 + 𝑖) ⋅ 𝑒−𝑖𝜙0

𝑚

⎞⎟⎟⎟
⎠

.

(3.9)

For every orientation 𝑛 ∈ [3] the separated components are

⎛⎜⎜⎜
⎝

𝐶𝑛
− #–𝑘 𝑛

𝑖
𝐶𝑛

#–0
𝐶𝑛

+ #–𝑘 𝑛
𝑖

⎞⎟⎟⎟
⎠

( #–𝑘 ) ≈ 𝑀−1(𝑚𝑛, 𝜙𝑛
0 ) ⋅ ⎛⎜⎜

⎝

𝐹 𝑛
𝜙𝑛−

𝐹 𝑛
𝜙𝑛

0
𝐹 𝑛

𝜙𝑛
+

⎞⎟⎟
⎠

( #–𝑘 ).

Shifting Components (ii. and iii.)

It is necessary need to shift the components to their locations corre-
sponding to their location within the source signal. For a component
𝐶 #–𝑝 which corresponds to the element of the 𝐼 #–𝑝 with 𝛿 #–𝑝 we want to
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Figure 3.3: Separated components
for orientation 𝑛 = 1.

get 𝐶′
#–𝑝 ( #–𝑘 ) = 𝐶 #–𝑝 ( #–𝑘 + #–𝑝 ). This is done using the Fourier shift theorem

as
𝐶′

#–𝑝 ( #–𝑘 ) = F [F −1[𝐶 #–𝑝 ]( #–𝑟 ) ⋅ 𝑒−2𝜋𝑖 #–𝑝 ⋅ #–𝑟 ]( #–𝑘 ).
In this way, the shifting in Item ii. is performed for every component
𝐶− #–𝑘 𝑛

𝑖
, 𝐶 #–0 and 𝐶+ #–𝑘 𝑛

𝑖
and for every orientation 𝑛 ∈ [3] (Fig. 3.4).

It is necessary to realize, how the frequencies in component 𝐶′
#–𝑝 mani-

fest themselves in the sensed LR images 𝐹 . The whole point of illumi-
nating the image in a way that shifts the components towards lower
frequencies is, that it moves them within the support of the OTF. Ac-
cordingly to Equation 3.2, the frequencies of the component 𝐶′

#–𝑝 are the
projections of the source signal 𝑆( #–𝑘 − #–𝑝 ) frequencies, as if #–𝑝 was the
origin of the Fourier transformed sensed signal 𝐹 . That is, an estimate
of the source signal from the information contained in the component
𝐶′

#–𝑝 can be illustratively6 written as6: The estimate is not obtained in
this way precisely as will be demon-
strated in Subsection 7. ̂𝑆𝐶′

#–𝑝
( #–𝑘 ) ⋅ 𝐻( #–𝑘 − #–𝑝 ) = 𝐶′

#–𝑝 ( #–𝑘 ). (3.10)

As indicated in Item iii. an OTF is assigned7 to every component 𝐶′
#–𝑝7: When using a model OTF, this

is trivially done by evaluation with
translated arguments. If a LR mea-
sured transfer function is to be used
it must be upsampled due to the mis-
match of sampling rates of the HR
and LR images, and the translation
must be realized using the Fourier
shift theorem. Alternatively, the eval-
uation may be done of an interpola-
tion of the measured data.

of every orientation 𝑛 ∈ [3]

𝐻′
#–𝑝 ( #–𝑘 ) = 𝐻( #–𝑘 − #–𝑝 ).
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Figure 3.4: The components shifted
to their corresponding locations in
the HR image.

Figure 3.5: OTFs 𝐻′
#–𝑝 of the #–𝑝 -

shifted components.

Wiener Filter (iv.)

The state of the reconstruction is that we have frequency components,
positioned at locations within the Fourier space that are in compliance
with the physical structure that they represent in the source signal
and have appropriate OTFs for them. Each OTF corresponding to a
component acts as degradation function for the source signal 𝑆 in the
components location (Eq. (3.10)). The degradation is embodied by a
convolution of the source signal with a point spread function (PSF)
or in the frequency space by multiplication with the OTF. Inversion
of this degradation process in image processing is called deconvolution
(also restoration). There are many approaches with various purposes
that attempt to achieve deconvolution each targeted for a different
purpose.

One such approach, that is widely used is the Weiner deconvolution
(filter). It is derived in as a least square error estimate of the original
signal, given a noisy sensed signal and a known transfer (degradation)
function.A simplified version of the Weiner filter estimate ̂𝑆 of a noisy
signal 𝐹 and an OTF 𝐻 is given by

̂𝑆 = 𝐻∗𝐹
𝐻∗𝐻 + 𝜔2 ,

where 𝜔 is an empirically chosen real constant, which represents in-
verse signal-to-noise ratio (SNR) in the noisy signal. For the purpose
of restoring the relocated components the estimate is realized using
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Figure 3.6: Reconstructed HR image
using Weiner deconvolution.

frequency information from all of the components in the numerator
and the full HR image OTF in the denominator

̂𝑆SIM( #–𝑘 ) =

3
∑
𝑛=1

∑ #–𝑝 ∈{− #–𝑘 𝑛
𝑖 , #–0 ,+ #–𝑘 𝑛

𝑖 }(𝐻𝑛′
#–𝑝 ( #–𝑘 ))∗𝐶𝑛′

#–𝑝 ( #–𝑘 )
3

∑
𝑛=1

∑ #–𝑝 ∈{− #–𝑘 𝑛
𝑖 , #–0 ,+ #–𝑘 𝑛

𝑖 }(𝐻𝑛′
#–𝑝 ( #–𝑘 ))∗𝐻𝑛′

#–𝑝 ( #–𝑘 ) + 𝜔2
.

It is visible (Fig. 3.6), in particular in the Fourier domain, that the
reconstruction is not optimal (Fig. 3.7). The first aspect that is clearly
not expected in an optimal reconstruction are noticeable peaks at the
locations of the shift frequencies #–𝑘 𝑛

𝑖 for all orientations 𝑛 ∈ [3].

Figure 3.7: At the top the full re-
constructed image without any mod-
ifications and filtering. There are vis-
ible periodic artefacts, in the SIM
terminology aptly named honey comb
artefacts, that are most prominent in
the background area of the image. In
the middle, the same reconstruction
but after performing strong apodiza-
tion filtering. It is apparent that the
apodized image has less artefacts in
the background but is also notewor-
thy, that the image also has a lower
resolution that can be observed by
comparing the sizes of the beads in
the filtered and non-filtered recon-
structions. At the bottom, difference
between the two reconstructions that
accents the form of honey comb arte-
facts.

There is no physical reason for the presence of these peaks. One ex-
planation is incorrect parameter estimation that leads to an incorrect
component separation. This is partly the case as we can see that the
left-top and right-bottom components have slightly more prominent
peaks than the other two orientations, which suggests that there are
”leftover” parts of the central component, which should physically have
the strongest intensity within the Fourier domain.

However, this reasoning fails to fully explain the deficiency of the re-
construction which reveals itself by the pronounced circumference of
the Fourier spectrum. This cannot be explained by inferior component
separation, but instead points toward a suboptimal transfer function
used for the reconstruction which admits frequencies that should be
dismissed as being beyond the OTF support of the imaging system.
We will tackle this issue in Chapter 4.

Apodization

One more tool which commonly gets employed to counter these high-
frequency artefacts is apodization of the output Fourier domain HR
image. Apodization is in effect a low-pass filter which is constant 1 near
the origin and beyond some predefined radius, decreases to 0 according
to some smooth function that is termed the apodization function. The
smoothness of the decrease is important for suppressing the formation
of artefacts that occur from using the discrete Fourier transform (DFT)
on a signal with abrupt edges. There are many possibilities to use
as apodization functions, but in this particular use-case, there is no
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significant difference between using any of them. One that is used
commonly is the cosine apodization function

𝐴𝑎(𝑟) = cos(𝜋𝑟
2𝑎),

where 𝑎 is a chosen constant parameter of the apodization.

Figure 3.8: The apodization filter
used in Figure 3.9.

A disadvantage of using apodization for countering these artefacts is
that it dismisses the information in the image from the high frequencies
and essentially acts as a denoising procedure during which inherently
some features of the image are lost. Due to this, correctly determining
and eliminating the attributes that cause the formation of artefact in
the reconstruction in the first place is regarded as a better, yet more
demanding and non-universal, approach. The artefacts that are filtered
from the original non-apodized image are shown in Figure 3.7 on a
cut-out from the spatial reconstructed image, and the full apodized
reconstruction is in Figure 3.9.

Figure 3.9: Reconstructed image af-
ter using apodization to suppress
artefacts of incorrect reconstruction
parameters and OTF.

3.3 Inversion Reconstruction

The principle of the inversion reconstruction is in many ways easier
compared to the Weiner filter reconstruction (Sec. 3.2). It relies on
formulating a forward model D that, when applied to the true source
signal 𝑠 yields the expectation of the sensed LR images ̂𝑓 . Unlike in the
Wiener filter reconstruction, we do not attempt to develop an estimate
for D−1, but instead, it is sufficient to formulate the forward model and
rely on mathematical optimization for estimating the correct desired
input 𝑠, minimizing some defined loss ℓ between D [𝑠] and the sensed 𝑓 .
A simplified outline of the solution that inversion reconstruction gives
is

̂𝑠 = argmin
𝑠

ℓ[𝑓, D [𝑠]].

Forward Model

The forward model for one LR acquisition 𝑓 with a specified illumina-
tion 𝑖𝑓 is apparent from Equation 3.2

̂𝑓 = (𝑖𝑓 ⋅ 𝑠) ∗ ℎ, (3.11)
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where ℎ is the PSF of the optical system. One difference that is neces-
sary to make from Equation 3.11, is, that the optimized ̂𝑠 must mini-
mize concurrently the loss ℓ for all of the forward model expectations
of the LR acquired images at the input, with a single estimate of ̂𝑠. An
obvious and easiest way to achieve this is to minimize the sum of loss
ℓ evaluated for every input image

ℓΣ[{𝑓𝑛}, {D𝑛[𝑠]}] = ∑
𝑛

ℓ[𝑓𝑛, D𝑛[𝑠]].

Loss Function

A choice that is necessary to make is, the form of the loss ℓ. The role of
the loss function is mapping the parameters of the optimization prob-
lem (in our case the values of the pixels of the forward model carried
out on the source signal 𝑠) onto a real number. The important aspect of
loss that is necessary to redeem is, that minimization of the loss leads
to a better estimate of the parameters that we want to determine. One
very common choice for the loss in deep learning applications is the
ℓ2 norm between the measurement and the prediction. It is possible
however, to choose a better loss, that is directly linked to the nature of
our optimization problem. An ideal choice is dependent on the nature88: Similarly to mathematical statis-

tics, there is no optimal choice for an
estimate. Instead we can choose to
value some of its properties such as
it being non-biased, its speed of con-
vergence or its robustness to spurious
input data (such as outlying measure-
ments). From a standpoint of math-
ematical optimization, also the nu-
merical stability of the optimization
must be taken into account.

of the estimate ̂𝑠 that we want to achieve. In microscopy (especially in
low SNR acquisitions), the dominant source of noise is due to photon
(Poisson) shot noise (Sec. 4). Assuming a correct forward model D , we
can specify the probability of a sensed signal in relation to the true
source signal 𝑠 as

𝒫[𝑓 | D [𝑠]] = ∏
#–𝑟

(D [𝑠]( #–𝑟 ))𝑓( #–𝑟 )

Γ(𝑓( #–𝑟 ) + 1) ⋅ 𝑒−D[𝑠]( #–𝑟 ).

Based on this, assumption, we want to get a reconstruction ̂𝑠 such
that the probability 𝒫[𝑓( #–𝑟 ) | D [ ̂𝑠]( #–𝑟 )] is as large as possible, since
this would be the reconstruction that is most probable to describe the
sensed LR images 𝑓 . To reach this goal the loss is set to be the negative
log-likelihood9 of the sensed LR images (taking 𝑒 for the base of the9: Using this loss during the opti-

mization, if we disregarded the reg-
ularization term (Sec. 9), is equiva-
lent to performing the maximum like-
lihood estimate (MLE) of the 𝑠 in
mathematical statistics.

logarithm)

̃ℓ𝒫[𝑓, D [𝑠]] = − ln(𝒫[𝑓( #–𝑟 ) | D [𝑠]( #–𝑟 )])

= ∑
#–𝑟

D [𝑠]( #–𝑟 ) + ln(Γ(𝑓( #–𝑟 ) + 1))
− 𝑓( #–𝑟 ) ⋅ ln(D [𝑠]( #–𝑟 )).

(3.12)

The term ln(Γ(𝑓( #–𝑟 ) + 1)) in the loss of Equation 3.12 is constant for
any source 𝑠 so we can ignore it. The final loss for the optimization
problem then becomes

ℓ𝒫[𝑓, D [𝑠]] = ∑
#–𝑟

D [𝑠]( #–𝑟 ) − 𝑓( #–𝑟 ) ⋅ ln(D [𝑠]( #–𝑟 )). (3.13)
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Regularization Term

To prevent over-fitting of the reconstructed ̂𝑠 during the optimization,
it is necessary to add regularization to the optimization problem. Reg-
ularization leads to a simpler solution, that may be more robust to
the unwanted influence of noise that would otherwise be inflicted by
the optimization. In general, it is necessary to add some form of reg-
ularization into the optimization problem, if the ratio of the number
of parameters in the output to number of input data points is large.
The principle of regularization is to impose some additional constraint
to the output parameters that forces against outputs that would be in
conflict with what is physically expected of the output.

Here the regularization is added explicitly in the form of a regulariza-
tion term. The form of the regularization term can highly influence
the output and so it is necessary to choose it carefully. Most regular-
ization terms used in the context of images are defined in favour of
the principle, that the output should be reasonably smooth. In other
words, it attempts to penalize variation in the output.

One of the most commonly used regularization terms is total variation
(TV) in the form

RegTV[𝑠] = ∑
#–𝑟

|∇𝑠( #–𝑟 )|,

where ∇𝑠 is approximated for the discretely sampled 𝑠 and the result-
ing formula, for 𝑢 and 𝑣 being the pixel indices, is given by

RegTV[𝑠] = ∑
𝑢,𝑣

√|𝑠(𝑢 + 1, 𝑣) − 𝑠(𝑢, 𝑣)|2 + |𝑠(𝑢, 𝑣 + 1) − 𝑠(𝑢, 𝑣)|2.

Another option that is frequently used for images is Good’s roughness
(GR) for which the continuous formula is

RegGR[𝑠] = ∑
#–𝑟

√𝑠( #–𝑟 )(Δ√𝑠)( #–𝑟 ),

where Δ√𝑠 is the Laplace operator and it is approximated in the
discrete domain as

RegGR[𝑠] = ∑
𝑢,𝑣

√𝑠(𝑢, 𝑣) ⋅ (√𝑠(𝑢 + 𝑢Δ, 𝑣) + √𝑠(𝑢 − 𝑢Δ, 𝑣)
𝑢Δ𝑣Δ

+ √𝑠(𝑢, 𝑣 + 𝑣Δ) + √𝑠(𝑢, 𝑣 − 𝑣Δ) − 4 ⋅ √𝑠(𝑢, 𝑣)
𝑢Δ𝑣Δ

) .

Optimization

The final reconstruction optimization problem is posed as

̂𝑠 = argmin
𝑠

(ℓΣ[{𝑓𝑛}, {D𝑛[𝑠]}] + 𝜆Reg[𝑠]),

where 𝜆 is the regularization parameter, that is set empirically and the
loss is the sum of Poisson losses ℓ𝒫.
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Figure 3.10: Reconstructed ̂𝑠 using
optimization reconstruction with TV
(top row) and GR (bottom row) for
regularization and 𝜆 = 0.05. A big
difference in the two reconstructions
is not visible in this case.

The numerical optimization itself is performed using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm similar to
gradient descent with the use of source-to-source backward propa-
gated automatic differentiation for computing the gradient and Hes-
sian [22]

[22]: K Mogensen et al. (2018),
Optim: A Mathematical Optimization
Package for Julia

.

Figure 3.11: Comparison of the two
reconstructions using GR and TV for
regularization (𝜆 = 0.05) on a cut-
out of the image. It is important to
note that 𝜆 does not have the same
effect for one value on any regulariza-
tion.

3.4 Discussion

There has been a lot of research on the use of different reconstruc-
tion methods and their benefits have been demonstrated on particu-
lar datasets. To this date, no reconstruction method has been distin-
guished as the ”holy grail” that is best for any dataset universally, as
is often the case for any set of algorithms developed for a particular
purpose. Benefits can be attributed to each method. More limiting are
the drawbacks that may deem an approach utterly inappropriate for a
particular methodology of observation.
One such example is the use of machine learning based methods. The
major drawback that they inherently posses is the lack of fidelity of
the output. This is due to the way machine learning methods work
in most implementations. Usually the training dataset is generated by
modifying the source similarly to how it was expressed in Subsection
3.3 and the user formulating a procedure to generate model sources 𝑠
that are applicable for the given observation. Generating the training
dataset in this manner ensures that the learning can be supplied with a
ground truth of the source signal. This means that the training dataset
is not necessarily natural in the sense that the data used for training
may not be variable enough to encompass the structure of the real
world data input for reconstruction and the resulting model can be
biased in the direction of data that it was supplied with during training.



3.4 Discussion 33

The quality of the model that is problematic in this regard is termed
in literature as the ability of the model to generalize and although
it is possible to minimize the issue to a certain extent, it is always
present at some degree. Due to this, machine learning methods are
hard to justify in the reconstruction of biological structures which are
not yet fully understood to the level of being able to generate models
of their structure that are absolutely dependable. On the other hand,
the fact that the reconstruction is ”aware” of the source structure that
it should output can lead to machine learning reconstructions, that
use appropriate source models, to be vastly less noisy and visually
and structurally more appealing than reconstruction based on other
methods.

Another benefit is that the reconstruction using machine learning can
be supplied with data without any preparation steps. Denoising and
other procedures that ensure the visual quality of the reconstruction
can be incorporated into the reconstruction step itself which means
that there is no information lost before the actual reconstruction is per-
formed. In general, there is a trend for new algorithms to consolidate
all the steps into one single model precisely due to this reasoning.

An aspect that must be considered when choosing a reconstruction
method, if the object of the observation is not static (e.g. in vivo ac-
quisitions), is the value of temporal resolution and the photon efficiency
of the observation. There is an intrinsic deficiency of the Wiener filter
reconstruction in the fact that it is necessary to sense the image 3 times
in a single orientation to be able to linearly separate the components.
Machine learning and optimization based reconstruction procedures do
not posses this limitation, as long as we are able to estimate the pa-
rameters of the illumination patterns. This can be recognized from the
Equation 3.1, which suggests that we gain no additional information
from the two additional acquisitions having different phase-offsets. An
equivalent optimization reconstruction is therefore in theory possible
to perform using only 3 LR images, one for each orientation (Fig. 3.12).
The difference in these two reconstructions should be explainable only
through the additional optimization parameters that should benefit
the robustness towards noise.

Figure 3.12: Comparison of opti-
mization reconstruction performed
from 3 and 9 LR images.

A further, very interesting, possible enhancement to the machine learn-
ing and optimization approaches is to apprehend the estimated param-
eters of the illumination pattern as random variables with a certain
distribution instead of constant estimates or to perform the estimates
as part of the reconstruction. That can be leveraged in the reconstruc-
tion to further fine tune the properties we are expecting from the out-
put without overly relying on the correctness of the estimates. Within
the machine learning approach this can be achieved by training the re-
construction model without supplying the correct parameters as part
of the data. For the optimization reconstruction, this can be done by
Bayesian inversion [23] using Bayes rule in the form [23]: Orieux et al. (2012), Bayesian

Estimation for Optimized Structured Il-
lumination Microscopy

𝒫[𝑠, 𝜆 | 𝑓] = 𝒫[𝑓 | 𝑠, 𝜆] ⋅ 𝒫[𝑠, 𝜆]
𝒫[𝑓] ,

where 𝜆 are the parameters of the illumination patterns during acqui-
sition of 𝑓 𝒫[𝑠, 𝜆] = 𝒫[𝑠] ⋅ 𝒫[𝜆] due to independence, 𝒫[𝑠] can be set
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either as the uninformative prior or as a conjugate prior to the noise
distribution 𝒫[𝑓 | 𝑠, 𝜆] and the prior 𝒫[𝜆] can be formed by randomiz-
ing the parameter estimates.
One hybrid approach to integration of parameter estimation into the
reconstruction is tiled SIM reconstruction. The idea is that the LR
images are subdivided into tiles and the reconstruction is performed
for each tile individually. The parameters are estimated independently
for the tiles. This has been shown to lead to better results in some
cases [24].[24]: Hoffman et al. (2020), Tiled Re-

construction Improves Structured Illu-
mination Microscopy
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If we have an optical system and want to model the way light passes
through that system, either in order to enhance our estimate of the
structure (source) that causes the output signal or to establish char-
acteristics of that system, we need to determine one of the transfer
functions of the optical system. Of the transfer functions, it is most in-
tuitive to directly measure the PSF or more specifically the magnitude
of the PSF. We disregard the phase change that the optical system may
introduce, because in most set-ups it is practically impossible to di-
rectly measure the imaginary part of the PSF1

1: It is possible in some cases to de-
termine the imaginary part (i.e. the
phase change PSF) from the magni-
tude PSF algorithmically if we as-
sume certain properties of the com-
plex PSF. This algorithmic restora-
tion of the phase is called phase-
retrieval. However, in order for the
phase to be unambiguous, thus for
the phase-retrieval algorithm to be
stable, it is necessary that the
phase retrieved function to be non-
symmetric with respect to the ori-
gin, which is often the case for the
PSF [25]

[25]: Goodman (2005), Phase Re-
trieval from Fourier Magnitude

. There are other algorithms
that for phase retrieval that leverage
the fact that the prior knowledge of
the PSF [26]

[26]: Hanser et al. (2003), Phase
Retrieval for High-Numerical-Aperture
Optical Systems

.

, since the light sensors
(In our case the complementary metal–oxide–semiconductor (CMOS))
only measure the energy that hits the sensor elements which is equiv-
alent for all possible phases of the EM wave, since it only depends on
the intensity of the EM wave (Chap. 1).

For estimating the transfer function, it is necessary to make an acquisi-
tion of a known source signal. It is possible to categorize the following
methods of estimation into two parts. At first, we will avoid creating
a model of the whole source image 𝑠 and only leverage the knowledge
of the objects that are being observed. For this, a more comprehensive
formulation of the image formation will be discussed in Section 4.1
and then the model-free estimate of the PSF will be performed (Sec.
4.2). Next, a complete model �̂� of the source signal 𝑠 will be deter-
mined (Sec. 4.3) and a method for estimation of the OTF using this
model will be demonstrated. Afterwards, one more estimate of the PSF
that leverages the model and recognizes the fact that the data is from
a SIM acquisition will be performed (Sec. 4.5) Finally, we will return
to the topic from Chapter 3 and compare the reconstructions that use
the transfer function estimates from this chapter (Sec. 4.6).

4.1 Image Formation Model

Devising an image formation model means to formulate the manner
in which, we expect light from the source to manifest itself in the
resulting sensed signal. For reasoning about the later estimates of the
transfer functions, it is necessary to express this image formation model
mathematically. It is sensible to proceed in the same chronological
order as the light passing through the apparatus. With this in mind,
we will start off with the illumination of the focal plane.

Illumination

The transfer function of the optical system, is given by measuring the
way that light passes though the apparatus given a uniformly illumi-
nated focal plane. However, we do not have data directly observed us-
ing a regular uniformly illuminated wide field microscopy system. Our
images are acquired with the harmonic illumination (Chap. 2). This
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means that for a still2 image, we have 9 wide field images with 3 dif-2: Meaning that the source of the
light is stationary in contrast to
in vivo biological acquisitions, where
this is not the case.

ferent pattern orientations and 3 different phases3

3: In accordance with the method
that is used to generate the patterns
in the case of our SIM setup, we are
assuming that the phases differ by
2𝜋/3 from one another and do not
determine them independently (Sec.
3.1).

for each of those.

In order to account for this discrepancy, we will emulate the uniform
illumination by summing all the images acquired with different illu-
minations together (this will also reduce noise (Sec. 4)). Due to addi-
tivity of the optical system, this results in the same signal, as if an
acquisition was made with the sum of the illumination patterns. For
three patterns in one orientation 𝑖−, 𝑖0 and 𝑖+, where the phases are
𝜙0 − 2𝜋

3 , 𝜙0 and 𝜙0 + 2𝜋
3 , let us, without loss of generality, assume that

𝜙0 ≡ 0 (since we can move the origin as we please), simplifying the
sum 𝑖Σ (Fig. 4.1) along the line of the wave vector of the harmonic
pattern i.e. #–𝑟 = 𝛼( #–𝑘 𝑖)T, gives

𝑖Σ( #–𝑟 ) =
3

∑
𝑖=1

1 − 𝑚𝑖
2 cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 + 2𝜋𝑖

3 )

= 3 −
3

∑
𝑖=1

𝑚
2 cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 + 2𝜋𝑖

3 )

= 3 − 𝑚
2 cos(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 )

3
∑
𝑖=1

(cos 2𝜋𝑖
3 )

⏟⏟⏟⏟⏟⏟⏟
=0

− 𝑚
2 sin(2𝜋 #–𝑘 𝑖 ⋅ #–𝑟 )

3
∑
𝑖=1

(sin 2𝜋𝑖
3 )

⏟⏟⏟⏟⏟⏟⏟
=0

,

where, in the second step, we made the assumption that 𝑚1 = 𝑚2 =
𝑚3

4.4: This assumption holds precisely if
the illumination pattern is generated
by a diffraction grating, which is our
case, and also theoretically if laser in-
terference is used.

Figure 4.1: Sum of the illumination
pattern intensity along the wave vec-
tor for the first orientation, results in
a uniform intensity.

Noise

As a first step towards developing a faithful image formation model of
a uniformly illuminated source, we need to consider noise.

The mode of noise, that we will be particularly interested in is additive
noise, for which the strength of the noise is added to the noise free
source signal5

5: The location in the apparatus in
which noise corruption happens is
particularly interesting for the pur-
pose of estimating the transfer func-
tion, because if the noise is added to
the signal before the pass through the
optical system, it is degraded with
the transfer function along with the
signal and if the corruption happens
after, the noise affects the already de-
graded signal and is independent of
the transfer function. As a simplifica-
tion measure, and in compliance with
the major sources of noise, we will
only regard noise that corrupts the
signal after the pass through the op-
tical system.

:

𝑓( #–𝑟 ) =
signal
⏞𝑔( #–𝑟 ) + 𝜂( #–𝑟 )⏟

noise
. (4.1)

Additionally, in Equation 4.1 the noise 𝜂( #–𝑟 ) has a specified distribu-
tion6

6: It is not uncommon to choose to
model the noise by a Gaussian distri-
bution (𝒫 ≡ 𝒩) even if the Gaussian
distribution is physically unrealistic
for the given noise source. This as-
sumption is often made for the pur-
pose of simplifying computation.

𝜂( #–𝑟 ) ∼ 𝒫 #–𝑟 ,
where we often assume that the distribution is location independent
(i.e. 𝒫 #–𝑟 ≡ 𝒫). An important property to consider when characterising
noise from different sources is signal independence, i.e. whether the
strength of the noise is independent from the intensity of the signal in
the sense of a random variable

{𝜂( #–𝑟 ) | 𝑔( #–𝑟 )} = 𝜂( #–𝑟 ).
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There are many sources of noise that should be considered in the ac-
quisition model. The most prominent of these sources are caused by
the image sensor (the CMOS), especially in low SNR acquisitions.. It
is also common to regard the variations in the ambient (background)
illumination i.e. the light that is not part of the source we are mea-
suring as noise. The sources, that are the greatest contributors to the
noise corruption of the expected signal are: A popular measure used in signal pro-

cessing to quantify the relative power
of noise is the SNR. For an image it
is defined as

SNR =
∑
𝑢,𝑣

|𝑔(𝑢, 𝑣)|2

∑
𝑢,𝑣

|𝜂(𝑢, 𝑣)|2
.

Figure 4.2: The Poisson distribution
and its continuous equivalent

�̃�𝜆(𝑥) = 𝑒−𝜆(𝜆)𝑥

Γ(𝑥 + 1) ,

for 𝜆 = 4.

Photon noise Inherent to the quantized nature of energy transmis-
sion of light. Sensors measure irradiance by counting the number
of discrete photons that land on the sensor in a given time inter-
val Δ𝜏 . The arrivals of individual photons are independent and
can therefore be regarded as a Poisson process. The number 𝑁 of
photons detected in the time interval Δ𝜏 can thus be described
by the distribution (Fig. 4.2)

𝒫 [𝑁 = 𝑥] = 𝑒−𝜆′Δ𝜏(𝜆′Δ𝜏)𝑥

𝑥! ,

where the rate parameter 𝜆′ corresponds to the expected incident
photon count per unit time, i.e. the expected number of photon
detections per a unit of time. It is dependent on the source lu-
minance. Since 𝔼𝑁 = Var(𝑁) = 𝜆′Δ𝜏 ≕ 𝜆, the ratio of signal
to noise increases with

√
𝜆′Δ𝜏 and so the corruption due to this

source of noise is greatest in situations with low signal levels. For
larger counts of photons, we can use the central limit theorem to
approximate the photon noise by a Gaussian additive noise [27],

[27]: Hasinoff (2021), Photon, Poisson
Noise

whose variance and mean both depend on the signal luminance
level

𝜂( #–𝑟 ) ∼ 𝒩 (𝜆′( #–𝑟 ) ⋅ Δ𝜏, 𝜆′( #–𝑟 ) ⋅ Δ𝜏) .
Dark current Semiconductor detectors in the image sensor are sus-

ceptible to thermal agitation [5], which can cause the photoca-

[5]: Aguet (2009), Super-Resolution
Fluorescence Microscopy Based on
Physical Models

pacitors to charge even in the absence of light (hence the name
dark current) leading to false signals. Due to the phenomenon of
dark current, the sensors are often cooled during acquisition to
reduce this effect. Noise from this source is signal independent
and additive.

Background noise Additive and independent noise from the ambient
light that reaches the sensor or unwanted light caused by other
effects. An example can be the lagged emission of the fluorescent
proteins. This effect of ambient light from outside sources is most
prominent for low energy light (i.e. light with low frequencies, e.g.
infrared light), which is more prone to scattering and harder to
effectively suppress. In the case of biological sensing however, a
majority of what we consider background noise comes from the
light that is far from the focal plane and defocus causes it to blur
and appear as ambient light with locally (meaning in a small
bounded region) limited variation. This is the principal reason
for the use of a TIRFM setup.

Auxiliary sources A variety of causes, mainly in the imaging sen-
sor, that are produced at the read-out time7

7: The phases after the photo acti-
vation of the sensor elements (con-
sisting of amplification, digitization
of the analog signal etc.).

. Notably the charge
transfer in the CMOS sensor can be the cause of noise although,
modern CMOS sensors are seeing much improvement in this di-
rection in the recent past [28]

[28]: Holst (2014), Scientific CMOS
Camera Technology: A Breeding
Ground for New Microscopy Tech-
niques. Auxiliary sources can be both

signal dependent and independent.
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If we know or assume a distribution of additive noise, it is possible to
estimate its parameters using regions of the image with approximately
or theoretically constant intensity (e.g. background regions)

𝐴 ≔ { #–𝑟 | 𝑔( #–𝑟 ) ≈ 𝑐} .

Moreover, if the limitation to the theorized noise distribution is toIt is often the case that we assume,
or in approximation assume, that the
distribution of the additive noise is
Gaussian and we can estimate the pa-
rameters of the noise using the for ex-
ample MLE

�̂�𝜂 = 1
|𝐴| ∑

#–𝑟 ∈𝐴
(𝑓( #–𝑟 ) − 𝑐)

̂𝜎2𝜂 = 1
|𝐴| ∑

#–𝑟 ∈𝐴
(𝑓( #–𝑟 ) − �̂�𝜂)2.

be avoided, it can be eyeballed from the histogram or the histogram,
kernel or other empirical estimate of the intensity distribution within
𝐴 can be used.

Figure 4.3: The windowed Otsu
threshold leads to lower intensities
of some beads to be passed as
background. On the left, side, Otsu
threshold 𝑡𝑜( #–𝑟 ) is used for classifying
the image pixels into background and
foreground by selecting the locations
which have a higher intensity than
𝑡𝑜( #–𝑟 ). On the right, the threshold is
lowered to ̃𝑡𝑜( #–𝑟 ) ≔ 0.3 ⋅ 𝑡𝑜( #–𝑟 ) and
the same classification is performed.
At the bottom, difference between re-
jected pixels by 𝑡𝑜 and accepted by ̃𝑡𝑜
as foreground are shown.

In our case, the premise that allows us to select such a set 𝐴 is the lack
of other non-ambient signal sources besides the beads. The problem
therefore reduces to the distinction of the beads from the background,
for which we can use the Otsu threshold [29], which minimizes the

[29]: Otsu (1979), A Threshold Se-
lection Method from Gray-Level His-
tograms

intra-class variance for two classes of within the image

𝑡𝑜 = argmin
𝑡

(|{𝑓( #–𝑟 ) | 𝑓( #–𝑟 ) > 𝑡}| ⋅ Var{𝑓( #–𝑟 ) | 𝑓( #–𝑟 ) > 𝑡}

+|{𝑓( #–𝑟 ) | 𝑓( #–𝑟 ) ≤ 𝑡}| ⋅ Var{𝑓( #–𝑟 ) | 𝑓( #–𝑟 ) ≤ 𝑡}) .

It is not effective, though, to use the global Otsu threshold, because
the image does not have a uniform distribution of intensity due to
the aberrations and vignetting and partly due to the varying concen-
tration of beads within the image source. What turns out to be a
better choice is a windowed Otsu threshold determined for each pixel.
Even with this enhancement though, the threshold does not achieve to
completely eliminate the lower intensities at the edges of beads from
the background which we want to determine (Fig. 4.3). Because back-
ground covers the majority of the image region and we have a lot of
data points available to estimate the noise distribution from, we can
afford to reduce the threshold for the benefit of only accepting noise at
the cost of rejecting some of the background in the process. Empirically
the choice was for the final lowered windowed threshold to be

̃𝑡𝑜 = 0.3 ⋅ 𝑡𝑜,

which is used in the thresholding for estimation of 𝐴, the background.

A well established model of the noise distribution that is used in low
SNR acquisitions is noise consisting of two components that are as-
sumed to be independent. A Poisson distributed signal-dependent com-
ponent 𝜂𝒫 that represents the photon shot noise and a Gaussian signal-
independent component 𝜂𝒩 for the read-out noise [30]. An 𝑎 and 𝑏[30]: Foi et al. (2008), Practical

Poissonian-Gaussian Noise Modeling
and Fitting for Single-Image Raw-Data

parametrized formulation of the model that we are to estimate can be
written as

𝜂𝒫( #–𝑟 ) = 1
𝑎 ⋅ 𝛼( #–𝑟 )

𝜂𝒩 = 𝛽
𝛼( #–𝑟 ) ∼ 𝒫(𝑎 ⋅ 𝑔( #–𝑟 ))

𝛽 ∼ 𝒩(0, 𝑏2)

𝜂( #–𝑟 ) = 𝜂𝒫( #–𝑟 ) + 𝜂𝒩.

(4.2)

For the estimate of this model, it is easiest to assume some form of the
noise-free signal 𝑔.

We selected 𝐴 as the background exactly for the reason that we may
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make some deductions about 𝑔 within the region of 𝐴. Unfortunately
the assumption stated as a premise for selecting 𝐴 as the appropriate
region was too crude. It is not viable to assume that 𝑔( #–𝑟 ) ≡ 0 for #–𝑟 ∈
𝐴 according to the premise, because of the ambient light background
noise. We will estimate the ambient light background ̂𝑔 that will play
the role of 𝑔 within 𝐴 by taking a windowed mean of the background
regions (Fig. 4.4).

Figure 4.4: The estimate ̂𝑔 using the
windowed mean of the background.

There is an unequivocal scheme for roughly verifying the sensibility of
the model (Eq. (4.2)) taking the advantage of additivity of the Poisson
and Gaussian distributions

𝑋 ∼ 𝒩(0, 𝜎2
𝑋), 𝑌 ∼ 𝒩(0, 𝜎2

𝑌 )
𝑋 ∼ 𝒫(𝜆𝑋), 𝑌 ∼ 𝒫(𝜆𝑌 )

⟹
⟹

𝑋 + 𝑌 ∼ 𝒩(0, 𝜎2
𝑋 + 𝜎2

𝑌 )
𝑋 + 𝑌 ∼ 𝒫(𝜆𝑋 + 𝜆𝑌 ). (4.3)

The verification is done by inspecting the histogram of 𝑓( #–𝑟 ) − ̂𝑔( #–𝑟 ) =
̂𝜂( #–𝑟 ) for #–𝑟 ∈ 𝐴, which according to Equation 4.3 should be a mixture

of the Poisson and Gaussian distributions (Fig. 4.5) in the form

∑
#–𝑟 ∈𝐴

𝜂( #–𝑟 ) = ∑
#–𝑟 ∈𝐴

𝜂𝒫( #–𝑟 ) + ∑
#–𝑟 ∈𝐴

𝜂𝒩 = 1
𝑎 ⋅ ∑

#–𝑟 ∈𝐴
𝛼( #–𝑟 ) + ∑

#–𝑟 ∈𝐴
𝛽

∑
#–𝑟 ∈𝐴

𝛼( #–𝑟 ) ∼ 𝒫(𝑎 ⋅ ∑
#–𝑟 ∈𝐴

𝑔( #–𝑟 ))

∑
#–𝑟 ∈𝐴

𝛽 ∼ 𝒩(0, |𝐴| ⋅ 𝑏2)

Figure 4.5: The histogram of 𝑓( #–𝑟 )−
̂𝑔( #–𝑟 ) for #–𝑟 ∈ 𝐴. The Poisson com-

ponent of the histogram is apparent
which should in part imply that the
Gaussian component does not play a
large role in our acquisition (i.e. that
𝑏 ≪ 𝑎).

An estimate is made using the unbiased cumulant estimates from the
data [31].

[31]: Bahler et al. (2022), PoGaIN:
Poisson-Gaussian Image Noise Model-
ing From Paired Samples

It is practical to assume that the, yet unknown, source signal 𝑠( #–𝑟 ), is
directly proportional to the concentration of the fluorescent molecules,
which in turn is directly proportional to their illuminated volume. For
this, it is necessary, that, besides the background noise8, to disregard

8: Which can be reasonably well re-
moved, but it is important to note
that only the power of the noise,
linked to the mean value, is effec-
tively reduced, not the variation as
such. Methods of removing the back-
ground noise generally remove the
low spatial frequencies, however the
background noise is also prone to
the photon shot phenomenon and
other signal dependent noise sources,
which reside even after the back-
ground removal.

the noise sources, which arise at the source level. This is a reasonable
proposition, owing to the fact, that most of the noise can be attributed
to the sensor and is added to the sensed signal after the pass through
the optical apparatus.

The Transfer Function

Next step is to consider how the source signal 𝑠( #–𝑟 ) is affected by the
pass through the optical system. As a reminder, in general, for a linear
system H , the Fredholm equation of the first kind applies ∀ #–𝑟 ∈ ℝ2

𝑔( #–𝑟 ) = H [𝑠( #–𝑟 )] = H [∬
ℝ2

𝑠( #–𝑥)𝛿( #–𝑟 − #–𝑥) d #–𝑥]

= ∬
ℝ2

𝑠( #–𝑥) H [𝛿( #–𝑟 − #–𝑥)]d #–𝑥 = ∬
ℝ2

𝑠( #–𝑥)ℎ( #–𝑟 − #–𝑥 ; #–𝑟 ) d #–𝑥 , (4.4)

or without the focal plane simplification ∀ #–𝑟 ∈ ℝ3

𝑔( #–𝑟 ) = ∭
ℝ3

𝑠( #–𝑥)ℎ3( #–𝑟 − #–𝑥 ; #–𝑟 ) d #–𝑥 ,
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where we are using the same notation as in Equation 4.1 and

ℎ( #–𝑟 − #–𝑥 ; #–𝑟 ) ≔ H [𝛿( #–𝑟 − #–𝑥)]

denotes the PSF.

Estimating the PSF ℎ that is location dependent like in Equation 4.4
is badly conditioned, so we need to restraint ourselves to a model or
a simplification of the transfer. One option to handle this, is to make
the assumption that the system is aplanatic9. This assumption makes9: An optical system, or more specif-

ically the lens configuration is apla-
natic, if it is free of both spherical
and coma aberrations.The aplanatic
system assumption is not fully justi-
fied and there is a slight location de-
pendence in practice. This issue can
be addressed by estimating the PSF
on patches of the sensed image sepa-
rately. This will be done in later sec-
tions.

the PSF focal plane location independent i.e. ∀ #–𝑥 , #–𝑟 ∈ ℝ2

ℎ( #–𝑟 − #–𝑥 ; #–𝑟 ) = ℎ( #–𝑟 − #–𝑥)

within the same 𝑧-offset plane from the focal plane10.

10: However it is important to real-
ize that it is not true that under the
assumption of an aplanatic system
that PSF ℎ3 is identical as a func-
tion ℝ3 → ℝ for the whole imaged
volume. The lack of spherical aberra-
tion and coma only fixes ℎ on the 𝑥
and 𝑦 axes of the object space, so for
#–𝑥, #–𝑟 ∈ ℝ3

ℎ3( #–𝑟 − #–𝑥; #–𝑟 ) ≡ ℎ3( #–𝑟 − #–𝑥; 𝑧).

For the location invariant ℎ, we can rewrite Equation 4.4 as

𝑔( #–𝑟 ) = ∬
𝑅2

𝑠( #–𝑥)ℎ( #–𝑟 − #–𝑥) d #–𝑥 = (𝑠 ∗ ℎ)( #–𝑟 ), (4.5)

where ∗ denotes the convolution operation. The locality11 of the convo-

11: Locality is understood here as the
property that if supp(ℎ) ⊂ B𝛼, then
for a source 𝑠 for which supp(𝑠) ⊂ B𝛽
we there exists a 𝛾 such that supp(𝑠∗
ℎ) ⊂ B𝛾.

lution is key to making the PSF more intuitive and easier in practice to
measure. It is, because unlike the OTF, we are not forced to make the
estimate from the full image or strenuously map the frequency domain
of the parts used for measurement onto the frequencies of the acqui-
sition image. Consequently, parts that are easiest to work with can
be selected. This can be beneficial in eliminating noisy or inconsistent
data, or data, that our model does not consider.

The Source

In order to devise ℎ from Equation 4.5, it is necessary to determine
𝑠( #–𝑟 ), for the parts that are used for the measurement. Consider what
it would would mean for the acquisition, if 𝑠 = ∑ #–𝑎 ∈𝐴 𝛿 #–𝑎 . The sensed
image, where noise is disregarded, would be

𝑔( #–𝑟 ) = (𝑠 ∗ ℎ)( #–𝑟 ) = (( ∑
#–𝑎 ∈𝐴

𝛿 #–𝑎 ) ∗ ℎ)( #–𝑟 ) = ∑
#–𝑎 ∈𝐴

ℎ( #–𝑟 − #–𝑎 ), (4.6)

and if adapted to the more natural notation, where we emphasize,
which point underlines the term of the expansion in the image forma-
tion formula, i.e. ℎ( #–𝑟 − #–𝑎 ) ≕ ℎ #–𝑎 ( #–𝑟 ), Equation 4.6 changes to

𝑔( #–𝑟 ) = ∑
#–𝑎 ∈𝐴

ℎ #–𝑎 ( #–𝑟 ), (4.7)

and we see that the noise-free sensed signal is merely a set of copies of
the PSF at the locations of the initial 𝛿 sources.

Equation 4.7 is also applicable for
the non-aplanatic transfer, but it is
important to realize that in that
case the index #–𝑎 of the PSF does
not denote only a change in coordi-
nates (translation by #–𝑎 ), but also the
change in the function ℎ #–𝑎 itself.

In practice, this type of source is generated by imaging microspheres
most commonly made from plastics, stained with fluorescent dyes. Ac-
quisitions of fluorescent beads is often used by biologists for many
purposes such as calibrating equipment, because it is possible to man-
ufacture them with a high degree of precision and modeling the source
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that is generated by them is straightforward as we will observe in Sec-
tion 4.3.

An important aspect that is essential to be able to measure the PSF
in a direct manner is that the diameter of the bead is sub-diffraction-
resolution12

12: It is possible, and even benefi-
cial if the diameter is not sub-pixel-
resolution, but it does not make a dif-
ference in the principle of the PSF
measurement.. If the diameter were not to be sub-diffraction-resolution

the source signal would be different from the 𝛿 #–𝑎 of Equation 4.6, but
rather some other support limited source for which a model ̂𝑠 #–𝑎 would
be necessary to develop, and the noise-free sensed signal 𝑔 would not
be direct copies of the PSF ℎ but

𝑔( #–𝑟 ) = ∑
#–𝑎 ∈𝐴

( ̂𝑠 #–𝑎 ∗ ℎ)( #–𝑟 ) (4.8)

instead. Deriving the PSF ℎ from the signal in Equation 4.8 would
require deconvolution of the individual components ( ̂𝑠 #–𝑎 ∗ ℎ) with the
assumed model ̂𝑠 #–𝑎 and due to noise, this would necessarily mean that
we would need to make further assumptions either about the decon-
volved ℎ̂ or the noise.

The acquisition that is used for the PSF estimation is done by imaging
a suspension of TetraSpeck™microspheres, 0.1µm, where the diameter
is 0.099±0.008 µm [32], which is safely below the diffraction resolution [32]: Smith (2020), TetraSpeck™ mi-

crospheres, 0.1 µm - Certificate of
Analysis

of 𝜆em
2NA = 488nm

2 ⋅ 1.4 ≈ 174 nm = 0.174 µm.

4.2 PSF from Beads

It is common in among biologists to select the sensed signal produced
by one bead near the centre of the acquisition image and pronounce it
as the PSF of the optical system. There is ample room for improvement
from this approach. Noteworthy drawbacks of this approach are that

(a) noise contained in a single bead sample can be substantial,
(b) the bead centre may not be exactly located at the centre of a

pixel and therefore the PSF might be biased,
(c) it disregards the dependence on the 𝑧-offset from the focal plane

of the particular bead sample used,
(d) it is negligent towards the potential dependence of the sampled

bead position within the focal plane.

A simplest alternative that addresses all of the aforementioned draw-
backs and fixes most of them to certain extent is averaging multiple
bead samples. The steps of performing an estimate from multiple bead
samples are:

i. Selecting approximate centres 𝐶 of isolated beads with the high-
est intensity13

13: Beads with the highest intensity
can be assumed to have the tip clos-
est to the focal plane of the optical
system. Since we are looking for the
PSF at the focal plane (i.e. 𝑧 = 0),
these beads are selected for the esti-
mate.

.
ii. Cutting a patch around each centre #–𝑐 𝑖 containing the whole bead

sample.
iii. Subtracting the ambient light background from each patch. The

intensity of the ambient light in the location of the bead is es-
timated by the 0.15 quantile of the intensities of a larger patch
around the bead sample.
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iv. Finding the sub-pixel centres of the beads by least square error
(LSE) fitting a Gaussian14

14: Any other unimodal function,
which has its mode at the origin
would suffice. The Gaussian is strate-
gic here, since the PSF has close
shape to the Gaussian. In fact, it is
often modelled by a it.

to the sample array
v. Shifting by sub-pixel offsets of the estimated beads centres from

Item 14 to fix the them to a whole pixel value via Fourier shift
theorem.

vi. Averaging the patch pixels to obtain the PSF estimation.

We subtract the backgrounds of the sample beads before averaging
them, therefore, we may assume that their noise is centred, i.e. 𝔼𝜂 = 0.
The variance of the PSF values contained in the estimate is reduced
regardless of the distribution of the noise in the sensed samples due to
the law of large numbers.

We will perform the estimate of the hypothesised focal plane global
PSF on bead samples from the center of the image (Fig. 4.6). The
cut-outs along with the fitted centres of the bead samples are shown
in Figure 4.7. The final PSF estimate and its comparison with the
model introduced in Chapter 3 is visible in Figure 4.8.Figure 4.6: Bead samples selected

from the center of the image. For
better accuracy the locations were se-
lected from the HR reconstructed im-
age.

Figure 4.7: The bead samples cut-
outs from the center of the image and
their fitted centres.

A first test to see if the estimate is better than the proposed model
is to compare the deconvolution of the LR image with the proposed
PSF (Fig. 4.9). The deconvolution in this case is performed by for-
mulating an optimization problem very similar to the formulation of
the optimization problem of reconstruction (Sec. 3.3), with the sole
difference that the forward model is the convolution from Equation
4.5 and no regularization is performed. Importantly for assessing the
accuracy of the deconvolution, we need to realize, what an ideal decon-
volution should look like. The key is that the beads are sub-diffraction-
resolution and as such, they should have a single intensity and should
be comprehended by the optical system as a single point as defined by
the two-point resolution, but they do not have a sub-pixel-resolution so
they are supposed to be visible over multiple pixels. The sampling rate
of our setup is 61nm so, since the beads have a diameter of ≈ 99 nm,
they should have a image plane diameter of about 1.6pxLR.
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Figure 4.8: The PSF estimate
versus the model. The model is
clearly wider, which implies that
the diffraction-resolution was overes-
timated by the model which is in line
with the reconstruction flaws we dis-
cussed in Section 3.2.

Figure 4.9: Deconvolution of the
LR images performed with the PSF
model and the PSF estimate. The
beads size (99 nm) in the LR sampled
(61 nm/px) source should be approx-
imately 1.6 pxLR. The possible expla-
nation for the deviation from this ex-
pectation is the varying 𝑧-offset from
the focal plane which of the individ-
ual beads that causes defocus.

4.3 The Source Model

For establishing a model of the source signal, we need to

i. determine the model of a single bead sampled in the destinations
image sampling rate (i.e. for LR images the sampling rate is
61nmpx−1

LR and for HR images the sampling rate is 30.5nmpx−1
HR )

ii. find the bead locations within the object field and create the
full image model as a sum of the single bead model from Item i.
centred at each location.

Single Bead Model (i.)

The beads are effectively balls that are suspended at some 𝑧-offset
from the focal plane within the object field. We will model them as
such balls with a uniform distribution of fluorescent particles at their
surface. A simplification that is made is the, not fully accurate, as-
sumption that the 𝑧-offset of all the beads is 0nm. One consideration
must be kept in mind and that is the total internal reflection (TIR)
nature of the acquisition. This means that the illumination intensity,
more befittingly termed excitation intensity in this context, 𝑖ex is ac-
cording to the theory from Chapter 1 attenuated by 𝑒𝛼𝑧 where 𝛼 is
the attenuation constant that is determined by the super-critical angle
of the illumination and 𝑧 denotes the 𝑧-offset from the focal plane of
the location of the point in the object field. A full formulation of 𝑖ex is
therefore

𝑖ex(𝑥, 𝑦, 𝑧) = 𝑖ex(𝑥, 𝑦, 0) ⋅ 𝑒𝛼𝑧,
where 𝑖ex(𝑥,𝑦,0) is constant in our case and can be set to equal 1 without
loss of generality to the bead model.

The 𝑧-offset of a given patch of the surface of a ball with its tip at the
point (0, 0, 0) is

𝑧(𝑥, 𝑦) = 𝑅 − √𝑅2 − (𝑥2 + 𝑦2),

where 𝑅 is the radius of the ball.

We are working with sub-saturation excitation intensities and time
intervals, which means that

𝑖ex ⋅ 𝑑fl ∝ 𝑖em,
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where 𝑖em is the emission intensity and 𝑑fl is the distribution of the
fluorescent particles in the object field which was already assumed
to be constant for the beads surfaces. This means that the emission
intensity 𝑖em of a bead at the point (𝑥, 𝑦) in the focal plane (Fig. 4.10)
is

𝑖em(𝑥, 𝑦) = 𝑖ex(𝑥, 𝑦, 𝑧) = 𝑖ex(𝑥, 𝑦, 0) ⋅ 𝑒𝛼𝑧(𝑥,𝑦) = 𝑒𝛼𝑅

𝑒𝛼√𝑅2−(𝑥2+𝑦2) .

It is crucial to emphasize another simplification that is made and is
quite comical considering the goal of developing this model. We are
projecting the emission intensity from the (𝑥, 𝑦, 𝑧) location directly to
the emission intensity at the (𝑥, 𝑦) location on the focal plane. This
is not correct, due to the 𝑧-offset plane not having the same transfer
function as the focal plane. The major impact of this omission is that
we do not consider defocus (as part of the PSF difference) in any way.

The sampling in done by integration of the point emission function
𝑖em(𝑥, 𝑦) over the sensor element that corresponds to a given pixel

𝑚(𝑢, 𝑣) ≔ 𝑖em(𝑢, 𝑣) =
𝑢+ Δ𝑥

2 , 𝑣+
Δ𝑦
2

∬

𝑢− Δ𝑥
2 , 𝑣−

Δ𝑦
2

𝑖𝑒𝑚(𝑥, 𝑦) d𝑥d𝑦,

where Δ𝑥 and Δ𝑦 are the dimensions of the sensor element (i.e. the
sampling rates in the 𝑥 and 𝑦 axes).

Figure 4.10: LR and HR bead mod-
els. The radius of the bead in the LR
sampling rate is ≈ 1.6 pxLR, and for
the HR bead is is ≈ 3.2 pxHR.

Locating the Beads (ii.)

The locations of the beads are determined by an empirically con-
structed algorithm that is inspired by the general Hough transform
and image feature location algorithms. The idea is to

i. select locations that are candidate to the positions of beads, using
a global algorithm with a very low threshold such that no true
location of a bead gets discarded,

ii. filter the candidate locations by a local algorithm to discard the
false positives

iii. determine the final sub-pixel locations of the beads .

The reason for finding the initial candidates by a global algorithm (i.)
is induced by the preference of an algorithm that has a simple formu-
lation and for which there is not a overwhelming number of empirical
parameters that have to be set. The local filtering of the locations (ii.)
is motivated by the fact that the bead samples are typically locally de-
pendent and therefore to robustly discard the false positive locations
cannot to be done by comparing all the locations, but only the ones that
are comparable with their properties to the one that is being judged,
i.e. the locations in the neighbourhood of the bead in consideration.

The global algorithm that is used for selecting the candidates is based
on thresholding the cross-correlation of the HR reconstruction ̂𝑠 with
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Figure 4.11: Normalized cross-
correlation 𝒞𝑚𝐻𝑅× ̂𝑠 of the Weiner
filter reconstructed HR image with
the HR bead model 𝑚𝐻𝑅.

the HR bead model 𝑚𝐻𝑅 (Fig. 4.11) in the form

𝒞𝑚𝐻𝑅× ̂𝑠(𝑢, 𝑣) =
∑
𝑚,𝑛

̂𝑠(𝑢 + 𝑚, 𝑣 + 𝑛) ⋅ 𝑚𝐻𝑅(𝑚, 𝑛)

√ ∑
𝑚,𝑛

𝑚2
𝐻𝑅(𝑚, 𝑛) ∑

𝑚,𝑛
̂𝑠2(𝑢 + 𝑚, 𝑣 + 𝑛)

,

where the limits of summation of 𝑚, 𝑛 are taken to be the overlap re-
gions of the (𝑚, 𝑛)-shifted ̂𝑠 and 𝑚𝐻𝑅 and ̂𝑠 is constantly replicated
beyond its sampled borders by the border value [33]

[33]: Gonzalez (2008), Fundamentals
of Spatial Filtering

in order to ac-
count for (𝑢, 𝑣) in the full sampled area15

15: It is often the case that we in-
stead perform the correlation of the
demeaned (centred) functions 𝑓 − ̄𝑓
and 𝑔 − ̄𝑔 in which case the correla-
tion has the meaning of the correla-
tion coefficient and the has values in-
clusively between −1 and 1.

. The areas where the cross-
correlation 𝒞𝑚𝐻𝑅× ̂𝑠 is above 𝛼 = 0.62 are considered to be candidates
for beads locations (Fig. 4.12)

𝒞𝑚𝐻𝑅× ̂𝑠(𝑢, 𝑣) > 𝛼.

Figure 4.12: The cross-correlation to
establish the beads locations candi-
dates. It is visible that some locations
within the background are passed as
candidates. This is even more pro-
nounced in the distal areas of the im-
age near the edges.

The filtering of the candidate locations (ii.) is then made by comparing
the locations to a wide and narrow neighbourhood mean intensity of
the image, ̂𝑠W and ̂𝑠n respectively. In order for the bead region of
interest (ROI) to be considered as a true bead ROI and pass to the next
filtering step, the ratio of its ROI intensities to the mean intensities
must be above some threshold. The comparison with the wide mean
of intensity ̂𝑠W is taken with the motivation of discarding the false
positive locations that are due to noise that is reminiscent of the bead
model. It is made by a windowed mean with a window size of 201 ×
201 pxHR and the ideal threshold is empirically determined to be 𝛽W =
8.0. The final filter (Fig. 4.13) of the candidate ROIs by the wide mean
is done as

̂𝑠(𝑢, 𝑣) > 𝛽W ⋅ ̂𝑠W(𝑢, 𝑣).
Figure 4.13: The wide mean filter of
the candidate bead ROIs. It is effec-
tive in discarding the false positive
locations that are due to the back-
ground noise and therefore have a
low intensity in comparison with the
mean of their neighbourhood intensi-
ties.

The comparison with the narrow mean ̂𝑠n is performed in order to
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discard the false positive locations that are present because of the
reconstruction artefacts that occur using the Wiener filter reconstruc-
tion (Sec. 3.2) and to discard the pixels connecting ROIs of beads that
are close together, which is necessary for the Item iii.. It is made by a
windowed mean with the window size of 15×15 pxHR and the empirical
threshold is determined to be 𝛽n = 2.46 Similarly to the wide mean
threshold, the filtering of the ROIs is done as

̂𝑠(𝑢, 𝑣) > 𝛽n ⋅ ̂𝑠n(𝑢, 𝑣).

The final narrow mean filter that is used on the ROIs of the candidate
beads is in Figure 4.14Figure 4.14: In the wide mean, the

ROIs of these beads remain con-
nected. This is not desired for in the
next step, where the centroids of the
ROIs are used as initial locations of
the candidate beads for the Gaussian
fit. A filter that has a narrow window
size is efficient in reducing these con-
nections. Another possibility would
be to use the morphological opera-
tion of thinning [34]

[34]: Gonzalez (2008), Morphological
Image Processing

on the binary im-
age after the wide mean filter to re-
move the connections.

The sub-pixel center localization (iii.) is performed similarly as in Sec-
tion 4.2 by fitting a Gaussian to the centroids of the individual ROIs.
It assumes that the ROIs of two neighbouring beads does not overlap,
which is ensured (at a best effort bases) by setting the thresholds 𝛼,
𝛽W and 𝛽n in the previous steps. The fitted Gaussian are further uti-
lized to filter the artefacts that are passed as beads from the previous
steps. This is done by setting a threshold on the ratio of means 𝜇 and
deviations 𝜎 of the fitted Gaussian in a neighbourhood and also by
noticing that the artefacts are at set relative locations from the bead
that causes them (Fig. 3.7).

Figure 4.15: Comparison of the re-
constructed ̂𝑠 along with the sum of
the fit Gaussian functions for every
candidate location and the assumed
artefacts are filtered by their location
and the relative fitted mean 𝜇 and
deviation 𝜎. Even though many of
the artefact candidate locations are
filtered out, the outcome is not ideal
and it could be a better strategy to
use both the HR reconstructed image
for its better resolution and the LR
deconvolved image, perhaps in the
form of a cross-correlation with the
LR bead model to filter out the arte-
fact candidates.

The final source model (Fig. 4.16) �̂� is then obtained by summing the
single bead models 𝑚HR at the filtered locations, weighted in order
for the maximum intensity of the bead at the location to match the
intensity of the fitted Gaussian. Weighting is done to account for the
different 𝑧-offsets as mentioned in Subsection 4.3.

Figure 4.16: The reconstructed HR
image and the final model of the
source.
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4.4 Estimating the PSF from the Model

The estimate of the degradation function, which for an invariant (apla-
natic) system corresponds to the transfer function, supported that we
have a source model and its acquisition can be made very trivially [35]. [35]: Gonzalez (2008), Image Restora-

tion and ReconstructionIf we write the noisy transfer in the Fourier domain, we get

𝐹( #–𝑘 ) = 𝐻( #–𝑘 ) ⋅ 𝑆( #–𝑘 ) + Ν( #–𝑘 ), (4.9)

where 𝐻 is the transfer what we want to estimate. Therefore in a
noisy acquisition if Ν is sufficiently small relative to 𝐻 ⋅ 𝑆, the SNR is
sufficiently large, then

𝐹( #–𝑘 )
𝑆( #–𝑘 )

≈ 𝐻( #–𝑘 ).

Thus, if we have the model of the source �̂� ≈ 𝑠, it is sufficient to make
the Fourier transform and pixel-wise division with the sensed image in
the Fourier domain and we have an estimate �̂� of the OTF.

4.5 PSF from SIM

Since our terminal goal is to perform the SIM reconstruction using the
transfer function, we can use the model �̂�, and a similar optimization
problem as in Section 3.3 and try to determine the best transfer func-
tion specifically for this purpose. The optimization problem given a
model �̂� of the source, given as

�̂� = argmin
𝐻

ℓ[𝑓, D [𝐻]], (4.10)

The only change from D in Subsection 3.3 in Equation 4.10 is that now
we view the 𝐻 as the variable instead of the source 𝑠 and we substitute
the source in the forward mapping D by �̂�. We can use the same loss
ℓ in Equation 4.10 as in Subsection 3.3. It is not necessary to perform
regularization if instead of the OTF 𝐻 the optimization done for the
PSF ℎ which can be sampled over a small region and therefore we can
avoid the optimization problem to be underspecified, since we have
many more data points within the data 𝑓 than we want to optimize
over in the PSF ℎ.

4.6 Revised Reconstruction

There is a possibility of enhancing the reconstruction at a give loca-
tion by using the transfer function from that location instead of a
model estimate from the whole image plane. In this spirit the image
was subdivided into patches of right-top, left-top, center-center, right-
bottom and left-bottom in the 𝑥𝑦-plane. 12 beads were selected from
each patch within the image. An averaging estimation of the PSF was
performed and the Wiener filter reconstruction of the full image plane
was made using the localized PSF.
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Figure 4.17: The reconstructions of
the image using the localized PSF es-
timates. Boxes indicate the patches,
where the beads, were selected from
for the PSF estimate.

Figure 4.18: Comparison of the left-
bottom patch using the reconstruc-
tions of the image using the localized
PSF estimates. There is a slight vis-
ible difference near the edges of the
beads.
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Figure 4.19: Comparison of the re-
constructions and their Fourier trans-
forms made using the model OTF
and using the center-center patch lo-
calized averagedPSF. There is a sig-
nificant difference in the uniformity
of the Fourier image. Moreover, there
are no visible peaks in the centres
of the components. This reduces the
artefacts that are caused by the incor-
rect transfer function significantly.

There are perceivable differences between the patch reconstructions
(Fig. 4.17) using the PSFs estimates from the patches. In general, how-
ever, the reconstruction of the image with the patch estimate of the
PSF at the patch indices is noticeably better than those with PSF
estimate other than that particular patch (Fig. 4.18). It is logical and
true that the center patch estimate of the PSF produces reconstruc-
tions that are best in average over the whole image plane, since the
aberrations are closest to the off-center ones in average.
The next step is to compare the reconstruction using the model and the
estimate. This is done in Figure 4.19, where the reconstruction using
the center-center patch PSF estimate is shown. A resolution and visual
enhancement is undoubtedly achieved using this reconstruction.
We also want to see, if the estimated transfer function is useful for the
reconstruction of acquisition of the cell, since this is the prime goal of
making these estimates. To asses the quality of the reconstruction, we
use the center-center patch PSF and the model OTF to reconstruct
cell image SIM acquisition using the same microscope (Fig. 4.20).
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Figure 4.20: A comparison of the
reconstruction of the cell acquisi-
tion made by the model and the
center-center patch estimate of the
PSF. A visual quality enhancement
is achieved, although based on the
Fourier space results, an even bet-
ter result might be possible by us-
ing apodization or limiting estimat-
ing the support of the OTF produced
by the PSF and artificially reducing
it to 0 out of the bound of the sup-
port.

The quality improvement is also undeniable, so we may conclude, that
the PSF estimate is more adequate for the cell images as well (which
is logical). For better comparison of the artefact elimination, a closer
view of the reconstruction is shown in Figure 4.21.

Figure 4.21: A close up of the spa-
tial result achieved using the model
and the center-center PSF estimate.
Although the artefacts are not fully
eliminated a reduction is evident.

4.7 Discussion

Although significant improvement is achieved there is a vast opportu-
nity for improvement. Some of the improvements may be made to the
estimation of the PSF itself, but there is also room for enhancing the
reconstruction algorithm (Wiener filter is used) to match the attributes
of the PSF estimate.
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First for the estimation of the PSF.

1. As has been indicated in Subsection 4, the model of the noise is
truly the one and discussed in the subsection. There are meth-
ods for fitting the model, one of which was cited and commented
upon in the subsection. If this fit was to be made, we could
calculate the distribution of the estimate of the averaged bead.
This could give us the opportunity to optimize the transfer func-
tion further, based on the artefacts that are produced by the
reconstruction employing it by defining some loss related to the
amount of artefacts produced. This optimization could be made
with the knowledge of how probable it is for the PSF to truly be
this optimized form in contrast to the base estimate.

2. The source model estimation, or more specifically the Subsection
4.3 lead to finding bead locations that were merely artefacts. This
could be eliminated by developing a locating algorithm on the LR
summed image, which does not include artefacts and the result-
ing locations could be compared and further filtered to eliminate
all the artefacts. It, however, is not possible to distinguish some
artefacts from true beads even by eye, so an ideal model is not
thinkable using this approach.

3. The PSF metric of full width at half maximum (FWHM) has
been found to be different for the center and edge estimated
PSFs. This is not a surprise, since we know that the edge loca-
tions are more affected by the aberrations. However, it proposes
a possibility of determining the aberrations through assessing the
OTF produced by the measured PSF through fitting of Zernicke
polynomials [36] and through this, it may be possible to produce [36]: Siddik et al. (2023), Deep Learn-

ing Estimation of Modified Zernike Co-
efficients and Recovery of Point Spread
Functions in Turbulence

a model of the location variant aberrations strength. This could
be utilized to determine a location variant model of the transfer
function and improve the model reconstruction.

More importantly, what is possible to improve in the reconstruction in
order of assumed importance:

1. Limiting the support of the OTF that is produced by the PSF
which should further reduce the artefacts.

2. Seeing from the Fourier space reconstructions, that the edges
of the components are still have a visibly higher intensity than
the centres of the components, this could be alleviated by using
apodization, which should further reduce the artefacts.

3. The FWHM in 𝑥 and 𝑦 axes differed significantly in all the esti-
mations except for the center-center patch estimate. This means
that the spherical and coma are present and that the aplanatic
assumption is wrong by a greater margin then is expected. The
size of the error of the aplanatic assumption is a clear indication,
that tiled reconstruction could markedly improve the reconstruc-
tions. There is also the possibility of an even better approach
than the tiles produced by the estimate from the averaging of
beads throughout some predefined patches of the image plane. It
is in the assessment and integration of the estimate from Section
4.4, which could produce the estimate for any given sufficiently
large window within the image.

4. It is visible that the center components are have a greater inten-
sity than the edge components by a significant amount which is
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not realistically the true ratio of intensities. This could be more
closely analysed by the Fourier transform of the LR image sum,
as there is some overlap between the components. This indicates
the wrong estimation of modulations of the illumination patterns.
Therefore the modulation estimate should be modified and the
resulting reconstruction of those modification should be moni-
tored to asses its influence. If we had a measure for the artefacts,
it would even be possible to optimize modulations based on the
reconstruction artefacts, it produces.



Summary and Conclusion

I have demonstrated various different methods of the SIM reconstruction from images of an acquisition
using structured illumination. Two algorithms for reconstruction, the Wiener filter and the optimization
reconstructions in several forms and modifications were presented, implemented and their results where
presented compared and a commentary was given as to their drawbacks and benefits. There were given
options and prospects for improvement upon these algorithms that should lead to further enhancing the
results achieved. Also, a demonstration of the possibility of use of a reduced number of acquisitions was
made, that was commented upon in the literature, but the results were previously not presented.
A faithful image formation model was developed in the context of the pursuit of estimating the transfer
function of the optical system. The theoretical sources of noise were discussed, before a model of the
noise was stated and its validity was indicated. Then a procedure for estimating the PSF from a specific
acquisition of micro-spheres (beads) was presented and realized. Then a model of the source of the
acquisition was developed via a custom algorithm inspired by other image processing algorithms with a
result that is well justified by the sensed image. Two other possible methods of estimating the transfer
function were presented and implemented, one inspired by the optimization reconstruction algorithm,
with the use of the source model developed and the other also via the source model, but by use of the
LR image sum. The averaging of beads estimation was realized on different patches of the image plane
and comparison of the reconstructions made using the estimates was demonstrated. Finally the validity
and justification for use of these estimations was demonstrated by a reconstruction of the cell using the
estimate. A thorough discussion was given on the possible improvements upon the algorithms used.
The final reconstruction of the cell using the estimate demonstrates a compelling result with a visible
improvement in the quality, artefacts partially eliminated and the structure of the clathrin-coated pits
(CCPs) on the cell membrane surface visible in better contrast against the background noise. I have demon-
strated the validity of the procedures developed and the achieved results improvement is unmistakable.
Future possibilities for and paths towards improvement are clearly stated.
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