
Generation of Graphs for Invariants of the Vector
Fields to the Total Affine Transformation

1 Introduction

For the generation of the invariants of the vector fields, we need special graphs with a few
types of edges. Such graphs are called multi-layer graphs. Here, the edges of the first type
correspond to coordinates (vector positions) and the edges of the second type correspond
to the vector values. The edges of the third type have two different ends, one is connected
with the coordinates and the other with the values. So, these edges are oriented. The
main idea is to begin with a graph that have the node labels as low as possible and then
successively increase the node labels until the last possible graph has been reached.

1.1 Graphs for Independent Total Affine Transformation

Here we need only first two types of edges, therefore we generate bi-layer graphs. Each
node must be connected with at least two edges of the first type and with just one edge
of the second type; self-loops are not allowed. The graph is represented by a list of edges
in a matrix m× 2, where each column is one edge. The elements of the matrix are labels
of the nodes.

First, we generate the edges of the first type. The input is the number of edges m, we
successively increase it from 3 to the value implied by the power of our computer. The
current maximal value is 9. The first graph is

(

1 1 . . . 1 1
2 2 . . . 2 2

)

. (1)

In C language, the graph is represented by the array j of length 2m, where j[2 ∗ k] is
the first node of the kth edge and j[2 ∗ k + 1] is the second node of the kth edge. The
first graph is made

1 f o r ( k=0;k<m; k++) // the edges are l a b e l e d from zero
2 {
3 j [ 2∗ k ]=0; // the nodes are a l s o l a b e l e d from zero
4 j [ 2∗ k+1]=1;
5 }

The “last” graph, on which the algorithm should stop, is
(

1 1 3 4 . . . m− 2 m− 1 m− 1
2 3 4 5 . . . m− 1 m m

)

. (2)

It is generated to the array jm of the same length as j

1 f o r ( k=0;k<m; k++)
2 {
3 jm [2∗k]=k ;
4 jm [2∗k+1]=k+1;
5 }
6 jm [ 2 ]=0 ; // i r r e g u l a r va lue s are a s s i gned s epa r a t e l y
7 jm [ 2 ∗ (m−1)]=m−2;
8 jm [ 2 ∗ (m−1)+1]=m−1;
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The algorithm for generation of the next graph is then

1 // a lgor i thm 1 : A not equa l s B, edges E1
2 l 1=m−1; // l 1 i s the cur r ent node in the f i r s t row
3 whi le ( l1 >0)
4 {
5 l 2=m−1; // the search s t a r t s from the second node o f the l a s t edge
6 whi le ( l2>0 && j [2∗ l 2+1]>=jm [2∗ l 2 +1])
7 l2−−;
8 i f ( l2 >0) //a node that can be i n c r e a s ed was found
9 {

10 j [ 2∗ l 2+1]++; // i n c r e a s i n g
11 // the nodes behind the found one that would be lower , a re inc r ea s ed , too
12 f o r ( k=l 2 +1;k<m; k++)
13 j [ 2∗k+1]=max( j [ 2∗ k ]+1 , j [ 2∗ l 2 +1]) ;
14 }
15 e l s e //no node was found in the second row
16 {
17 l 1=m−1; // search from the f i r s t node o f the l a s t edge
18 whi le ( l1>0 && j [2∗ l 1 ]>=jm [2∗ l 1 ] )
19 l1−−;
20 i f ( l1 >0) //a node that can be i n c r e a s ed was found
21 {
22 j [ 2∗ l 1 ]++; // i n c r e a s i n g
23 f o r (k=l 1 +1;k<m; k++)
24 j [ 2∗ k]= j [ 2∗ l 1 ] ; // the nodes behind are the same
25 // the nodes in the second row w i l l be b igg e r by one
26 f o r (k=0;k<m; k++)
27 j [ 2∗ k+1]= j [ 2∗k ]+1;
28 }
29 }
30 } //when l 1==0, no other graph can be generated and i t s tops

To generate the second layer, we proceed analogically with some modifications. The
first graph is now

(

1 3 . . . n− 3 n− 1
2 4 . . . n− 2 n

)

. (3)

The number of nodes n must be even and the representation matrix has n/2 columns.
The criterion, if a matrix element can be increased, is not its comparison with the final
graph, but the test, if there is a non-used node. The inner loop of the algorithm must be
modified, too. The second layer of the graph is stored in the array g of the length n. The
list of nodes in an array pg of the length n has ones for the “empty” nodes and zeros for
the nodes with an assigned edge of the second type.

1 // a lgor i thm 2 : A not equa l s B, edges E2
2 k=n−2; // search from the l a s t but one edge
3 f l a g =0;
4 whi le (k>=0 && f l a g==0)
5 {
6 memset (pg , 1 , n ) ; // ar ray pg i s f i l l e d by ones
7 f o r ( k1=0;k1<2∗k+1;k1++)
8 pg [ g [ k1 ] ]=0 ; // the nodes be fo r e k−th edge are occupied
9 f o r ( k1=g [2∗k+1]+1;k1<2∗n && f l a g==0;k1++)

10 i f ( pg [ k1 ] ) // f r e e node i s found
11 {
12 g [2∗ k+1]=k1 ; // i t i s used f o r the new edge
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13 pg [ k1 ]=0;
14 f l a g =1;
15 }
16 i f ( f l a g )
17 {
18 k2=2∗k+2;
19 f o r ( k1=0;k1<2∗n && k2<2∗n ; k1++)
20 i f ( pg [ k1 ] ) // f r e e nodes must be occupied by the remaining edges
21 {
22 g [ k2]=k1 ;
23 pg [ k1 ]=0;
24 k2++;
25 }
26 }
27 k−−;
28 }
29 // i f f l a g remains zero , no edge can be moved and no new second l a y e r i s

p o s s i b l e

1.2 Graphs for Special Total Affine Transformation

We need tri-layer graph for this geometric transformation. The generation of three dif-
ferent layers would be too complicated, therefore we first generate all edges together and
we assign some of them to the second or third type. The main difference from the first
algorithm is the possibility of self-loops here, therefore the algorithm must be modified.
The first graph is now

(

1 1 . . . 1 1
1 1 . . . 1 1

)

. (4)

and the last one is
(

m m . . . m m
m m . . . m m

)

. (5)

1 // a lgor i thm 3 : A equa l s B, edges E1 + E2 + E3
2 l 1=m−1; // l 1 i s the cur r ent node in the f i r s t row
3 whi le ( l1>=0)
4 {
5 l 2=m−1; // the search s t a r t s from the second node o f the l a s t edge
6 whi le ( l2>=0 && j [2∗ l 2+1]>=jm [2∗ l 2 +1])
7 l2−−;
8 i f ( l2>=0) //a node that can be i n c r e a s ed was found
9 {

10 j [ 2∗ l 2+1]++; // i n c r e a s i n g
11 f o r ( k=l 2 +1;k<m; k++)
12 j [ 2∗ k+1]=max( j [ 2∗k ] , j [ 2∗ l 2 +1]) ;
13 }
14 e l s e //no node was found in the second row
15 {
16 l 1=m−1; // search from the f i r s t node o f the l a s t edge
17 whi le ( l1>=0 && j [2∗ l 1 ]>=jm [2∗ l 1 ] )
18 l1−−;
19 i f ( l1>=0) //an i n c r e a s a b l e node was found , l 1==0 i s s u f f i c i e n t here
20 {
21 j [ 2∗ l 1 ]++; // i n c r e a s i n g
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22 f o r ( k=l 1 +1;k<m; k++)
23 j [ 2∗k]= j [ 2∗ l 1 ] ; // the nodes behind are the same
24 // the nodes in the second row w i l l be a l s o the same
25 f o r ( k=0;k<m; k++)
26 j [ 2∗k+1]= j [ 2∗ k ] ;
27 }
28 }
29 } //when l 1==0, no other graph can be generated and i t s tops

Now, we must assign the type to each edge in each graph. We use an array jf for it.
It is the list of nodes, where each node has the following data: the number of connected
edges, the label of the edge of the second or third type (it must be just one) and the list
of nodes connected by an edge with the current node. The array jf has size n(2m + 2),
i.e. 2m + 2 elements for each node. An ith edge of the kth node finishes at the node
jf [k ∗ (2 ∗m+ 2) + 2 + i]. The array is created by transcription from the array j

1 f o r ( k = 0 ; k < m; k++)
2 {
3 phu = j f [ j [ 2 ∗ k ] ∗ (2 ∗ m + 2) ] ; // the cur r ent number o f edges
4 // at the f i r s t node o f the k−th edge
5 j f [ j [ 2 ∗ k ] ∗ (2 ∗ m + 2) + phu + 2 ] = j [ 2 ∗ k + 1 ] + 1 ;
6 j f [ j [ 2 ∗ k ] ∗ (2 ∗ m + 2) ]++;
7 phu = j f [ j [ 2 ∗ k + 1 ] ∗ (2 ∗ m + 2) ] ; // the cur r ent number o f edges
8 // at the second node o f the k−th edge
9 j f [ j [ 2 ∗ k + 1 ] ∗ (2 ∗ m + 2) + phu + 2 ] = j [ 2 ∗ k ] + 1 ;

10 j f [ j [ 2 ∗ k + 1 ] ∗ (2 ∗ m + 2) ]++;
11 // the f i r s t connect ion node−edge o f each node i s a s s i gned
12 // to the second type
13 f o r ( k = 0 ; k < n ; k++)
14 {
15 j f [ k∗(2 ∗ m + 2) + 1 ] = 1 ;
16 }
17 }

Now, we need to generate next assignment from the current one

1 // a lgor i thm 4 : A equa l s B, a s s i g n edges E2 + E3
2 f l a g = 0 ;
3 k = n − 1 ; //n i s the number o f nodes , so , k i s now the l a b e l o f
4 // the l a s t node
5 whi le ( k >= 0 && f l a g==0)
6 {
7 adr = j f [ k ∗ (2 ∗ m + 2) + 1 ] ; // addres s o f the second−type connect ion
8 //node−edge at the k−th node
9 k1 = j f [ k ∗ (2 ∗ m + 2) + 1 + adr ] ;

10 // I f two nodes are connected by more than two edges , then only f i r s t
11 //two edges are r e l e v an t
12 i f ( adr > 1 && j f [ k ∗ (2 ∗ m + 2) + 1 + adr ] == j f [ k ∗ (2 ∗ m + 2) +

adr ] | | k1<k )
13 {
14 whi le ( j f [ k ∗ (2 ∗ m + 2) + 1 + adr ] == j f [ k ∗ (2 ∗ m + 2) + adr ] &&

adr< j f [ k∗(2 ∗ m + 2) ] )
15 adr++;
16 }
17 i f ( adr >= j f [ k∗(2 ∗ m + 2) ] ) //No edge at the k−th node can be
18 // ass igned , t e s t next node .
19 {
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20 j f [ k∗(2 ∗ m + 2) + 1 ] = 1 ;
21 k−−;
22 }
23 e l s e //Ass ign the next edge at the k−th node .
24 {
25 j f [ k∗(2 ∗ m + 2) + 1]++;
26 f l a g = 1 ;
27 }
28 }
29 // I f f l a g remains zero , the r e i s no other node , we have reached
30 // a l l the graphs .

If two nodes are connected by more than two edges, there are only five different
possibilities, how to assign the connection of the second type:

(a) all edges are of the first type,

(b) one edge of the second type, rest first type,

(c) one edge of the third type with orientation from the first to the second node, rest first
type,

(d) one edge of the third type with orientation from the second to the first node, rest first
type,

(e) two edges of the third type with opposite orientations, rest first type.

See also Fig. 1. All other possibilities are just permutations and it is useless to test
them separately. The algorithm tests the case (d) twice, it is trade-off between simplicity
and speed.

(a) (b) (c) (d) (e)

Figure 1: The only five relevant possibilities of the assignment of the second-type connec-
tion node-edge to three edges connecting the same two nodes. All other possibilities are
just permutations.

5


