Finding lines in an image

$$w = x\cos(\phi) + y\sin(\phi)$$

Hough transform algorithm

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image for $\theta = 0$ to 180 H[d, θ] += 1
- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by

 $d = x cos\theta + y sin\theta$

A simple example

Registrace dat

4 základní kroky registrace

- 1. Volba řídících bodů
- 2. Korespondence
- 3. Design mapovací funkce
- 4. Resampling a transformace

FEATURE DETECTION

Area-based methods - windows

Feature-based methods (higher level info)

- distinctive points
- corners
- lines
- closed-boundary regions
- invariant regions

FEATURE DETECTION

POINTS AND CORNERS

Kitchen Rosenfeld

Kros-korelace a podobné metody

(k,m)

$$C(k,m) = \frac{\sum (I_{k,m} - mean(I_{k,m})) \cdot (W - mean(W))}{\sqrt{\sum (I_{k,m} - mean(I_{k,m}))^2} \cdot \sqrt{\sum (W - mean(W))^2}}$$

FEATURE MATCHING PYRAMIDAL REPRESENTATION

processing from coarse to fine level

wavelet transform

FEATURE MATCHING

PHASE CORRELATION

Fourier shift theorem

if f(x) is shifted by a to f(x-a)

- FT magnitude stays constant
- phase is shifted by $-2\pi a\omega$

shift parameter – spectral comparison of images

FEATURE MATCHING PHASE CORRELATION

SPOMF symmetric phase - only matched filter

image f window w

$$\frac{W. F^{*}}{|W.F|} = e^{-2\pi i (\omega a + \xi b)}$$

IFT (
$$e^{-2\pi i (\omega a + \xi b)}$$
) = $\delta(x-a,y-b)$

Log-polární transformace

log-polar transform

polar

$$r = [(x-x_c)^2 + (y-y_c)^2]^{1/2}$$

 $\theta = tan^{-1}((y-y_c) / (x-x_c))$

$$log R = \frac{(n_r - 1)log(r/r_{min})}{log(r_{max}/r_{min})}$$
$$W = n_w \theta / (2\pi)$$

RTS registration

$$\mathcal{F}_x[f(x-x_0)](k) = e^{-2\pi i k x_0} F(k).$$

$$F(R(f)) = R(F(f))$$

$$\mathcal{F}_x[f(ax)](k) = |a|^{-1} F\left(\frac{k}{a}\right).$$

$$FT \rightarrow | | \rightarrow log-polar \rightarrow FT \rightarrow phase correlation$$

- π periodicity of amplitude -> 2 angles
- log(abs(FT)+1)
- discrete problems

Mutual information method

Statistical measure of the dependence between two images

MI(f,g) = H(f) + H(g) - H(f,g)

FEATURE MATCHING FEATUR

FEATURE-BASED METHODS

Combinatorial matching

no feature description, global information graph matching parameter clustering ICP (3D)

Matching in the feature space

pattern classification, local information

invariance feature descriptors

Hybrid matching

combination, higher robustness

FEATURE MATCHING COMBINATORIAL - CLUSTER

FEATURE MATCHING FEATURE SPACE MATCHING

Detected features - points, lines, regions

Invariants description

- intensity of close neighborhood
- geometrical descriptors (MBR, etc.)
- spatial distribution of other features
- angles of intersecting lines
- shape vectors
- moment invariants
- . . .

Combination of descriptors

FEATURE MATCHING FEATURE SPACE MATCHING

min distance(($v1_k$, $v2_k$, $v3_k$, ...), ($v1_m$, $v2_m$, $v3_m$, ...)) k,m FEATURE MATCHING

FEATURE SPACE MATCHING

maximum likelihood coefficients

	W1	W2	W3	W4
V1	Dist			
V2				
V3				
V4				

min (best / 2nd best)

TRANSFORM MODEL ESTIMATION

x' = f(x,y)y' = g(x,y)

incorporation of a priory known information

removal of differences

transformations represented with a 2x2 matrix

Source: Alyosha Efros

transformations represented with a 2x2 matrix

2D Mirror about Y axis

$$\begin{array}{c} x' = -x \\ y' = y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)

$$\begin{array}{c} x' = -x \\ y' = -y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Translation?

$$x' = x + t_x$$

$$y' = y + t_y$$
NO!

Source: Alyosha Efros

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l_{25}\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

TRANSFORM MODEL ESTIMATION

Podobnostní (similarity) transformace

$$X = s x \cos(\theta) - s y \sin(\theta) + h$$
$$Y = s x \sin(\theta) + s y \cos(\theta) + k$$

Rigid body transform

s=1

Affine Transformations

Affine transformations are combinations of ...

Linear transformations, and

Translations

Properties of affine transformations:

Origin does not necessarily map to origin				
Lines map to lines				
Parallel lines remain parallel				
Ratios are preserved				
Closed under composition				
Models change of basis				

 $x' = a_0 + a_1 x + a_2 y$

 $y' = b_0 + b_1 x + b_2 y$

Projective Transformations

Projective transformations ...

Affine transformations, and

Projective warps

Properties of projective transformations:

Origin does not necessarily map to origin Lines map to lines Parallel lines do not necessarily remain parallel Ratios are not preserved Closed under composition Models change of basis

 $x' = (a_0 + a_1x + a_2y) / (1 + c_1x + c_2y)$

$$y' = (b_0 + b_1 x + b_2 y) / (1 + c_1 x + c_2 y)$$

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} \end{array}$	2	orientation $+ \cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\Diamond
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

TRANSFORM MODEL ESTIMATION - SIMILARITY TRANSFORM translation [$\Delta x, \Delta y$] rotation φ uniform scaling s

$$x' = s(x * \cos \varphi - y * \sin \varphi) + \Delta x$$

$$y' = s(x * \sin \varphi + y * \cos \varphi) + \Delta y$$

$$s \cos \varphi = a, \quad s \sin \varphi = b$$

min $(\Sigma_{i=1} \{ [x_i' - (ax_i - by_i) - \Delta x]^2 + [y_i' - (bx_i + ay_i) - \Delta y]^2 \})$

Outliers

Outliers can hurt the quality of parameter estimates

an erroneous pair of matching points from two images

Kristen Grauman

Outliers affect least squares fit

Outliers affect least squares fit

Feature-based alignment outline

Extract features

Extract features

Compute *putative matches*

Extract features

Compute *putative matches*

Loop:

Hypothesize transformation *T*

Extract features

Compute *putative matches*

Loop:

Hypothesize transformation *TVerify* transformation (search for other matches consistent with *T*)

Extract features

Compute *putative matches*

Loop:

Hypothesize transformation *T Verify* transformation (search for other matches consistent with *T*)

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- 1. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- **2. Estimate transformation parameters**

e.g., least squares or robust least squares

- 3. Transform the points in {Set 1} using estimated parameters
- 4. Repeat steps 1-3 until change is very small

Slide from Derek Hoiem

RANSAC random sample consensus

Task: Estimate best line

RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.

Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC: General form

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- **3.** Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, recompute estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

 \bigcirc

Total number of points within a threshold of line.

 \bigcirc

Repeat, until get a good result

RANSAC for line fitting

Repeat *N* times:

Draw *s* points uniformly at random

Fit line to these s points

Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)

If there are *d* or more inliers, accept the line and refit using all inliers

RANSAC algorithm

Rur k times: How many times? (1) draw n samples randomly How big? Smaller is better (2) fit parameters Θ with these *n* samples (3) for each of other *N*-*n* points, calculate their distance to the fitted model, count the number of inlier points) c Output Θ with the largest c How to define?

Depends on the problem.

How to determine n?

<u>Minimum</u> n value depends on Model.

How to determine k

- p: probability of real inliers
- P: probability of success after k trials

RANSAC pros and cons

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Lana Lazebnik

Local mapping functions

- Piecewise affine or cubic
- Thin-Plate Splines (TPS)

Piecewise affine mapping

Mapping functions – a comparison

Mapping functions – a comparison

GEOMTRANS TEST GEOMTRANS Affine THE TEST INAGE FOR APM REGISTRATION THE TEST INAGE FOR APM REGISTRATION GEOMTRANS GEOMTRANS TEST TEST Cubic HE TEST INAGE FOR APM REGISTRATION THE TEST IMAGE FOR APM REGISTRATION

Quadratic

Mapping functions – a comparison

Piecewise projective

reference

sensed (simulation)

From D. N. Fogel et al., UCSB

affine mapping

cubic mapping

piecewise affine

multiquadrics

TPS

TRANSFORM MODEL ESTIMATION UNIFIED APPROACH

Pure interpolation – ill posed

Regularized approximation - well posed

$$\min J(f) = a E(f) + b R(f)$$

- *E(f)* error term
- R(f) regularization term
- a,b weights

Choices for min J(f) = a E(f) + b R(f)

 $E(f) = \sum (x_i' - f(x_i, y_i))^2$

R(f) >=0 ||L(f)||

a << b least-square fit, f from the null-space of L a >> b "smooth" interpolation

TRANSFORM MODEL ESTIMATION UNIFIED APPROACH

Choices for min J(f) = a E(f) + b R(f)

$$R(f) = \iint \left(\frac{\partial^2 f}{\partial x \partial x}\right)^2 + 2\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 + \left(\frac{\partial^2 f}{\partial y \partial y}\right)^2 dxdy$$

$$f(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \sum_{i=1}^N a_i g_i (||x - x_i, y - y_i||),$$

 $TPS \qquad g_i(t) = t^2 \log t$

another choice *G-RBF* $g_i(t) = \exp\left(\frac{-t^2}{\sigma^2}\right)$

TPS

multiquadrics

inverse multiquadrics

Registrace s TPS

- 1. N dvojic bodů $(x,y) \rightarrow (x',y')$
- 2. Nalézt 6 + 2N koeficientů

$$a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, F_{i}, G_{i}$$

$$x' = a_{0} + a_{1}x + a_{2}y + \sum_{i=1}^{N} F_{i}r_{i}^{2}\ln r_{i}^{2}$$

$$y' = b_{0} + b_{1}x + b_{2}y + \sum_{i=1}^{N} G_{i}r_{i}^{2}\ln r_{i}^{2}$$

. . .

... ještě těchto 6 rovnic

Registrace s TPS
$$\sum_{i=1}^{N} F_i = 0$$
 $\sum_{i=1}^{N} G_i = 0$ $\sum_{i=1}^{N} x_i F_i = 0$ $\sum_{i=1}^{N} x_i G_i = 0$ $\sum_{i=1}^{N} y_i F_i = 0$ $\sum_{i=1}^{N} y_i G_i = 0$

Určete ostatní body obrázku

Jak to, že to funguje? $X \rightarrow \text{pryč od N bodů výraz} \qquad \sum_{i=1}^{N} F_i r_i^2 \ln r_i^2$

mizí, suma jde k 0, totéž pro y, tedy se objevuje vztah

 $x' \rightarrow a_0 + a_1 x + a_2 y$ $y' \rightarrow b_0 + b_1 x + b_2 y$

Jak to, že to funguje?

Vhodné pro situace s malou transformací Body uniformně Dostatek bodů a rovnoměrně

original

TPS, *a* >> *b*, "smooth" interpolation

TPS, *a > b*

TPS, *a < b*

TPS, *a << b*, least-square fit

original

TRANSFORM MODEL ESTIMATIONTPS x G-RBF

TRANSFORM MODEL ESTIMATION RIGIDITY

trade-off between accuracy and computational complexity

forward method

backward method

B[u(x, y), v(x, y)] = A[x, y]forward method Nemapuje se vždy na pozice pixelů -> INTERPOLACE Může produkovat díry backward B[u, v] = A[x(u, v), y(u, v)]method Nemapuje se vždy z pozice pixelů INTERPOLACE Může nepostihnout všechny vstupní pixely

bilinear

bicubic

Interpolation nearest neighbor

Interpolation nearest neighbor bilinear

Interpolation nearest neighbor bilinear bicubic

Implementation 1-D convolution

 $f(x_{o'},k) = \Sigma d(I,k).c(i-x_{o})$ $f(x_{o'},y_{o}) = \Sigma f(x_{o'},j).c(j-y_{o})$

ideal c(x) = k.sinc(kx)

Interpolation Kernel

Type of Resampling	Computational Complexity
Nearest-Neighbor	$O(n^2)$
Bilinear Interpolation	$O(n^2)$
Cubic Convolution	$O(n^2)$
Cubic Spline, Direct Computation	$O(n^4)$
Cubic Spline, Using FFT	$O(n^3 \log n)$
Radial Functions with Local Support	$O(n^4)$
Gaussian, Using FFT	$O(n^3 \log n)$

ACCURACY EVALUATION

Localization error - displacement of features

- due to detection method

Matching error - false matches

- ensured by robust matching (hybrid)
- consistency check, cross-validation

Alignment error - difference between model and reality

- mean square error
- test point error (excluded points)
- comparison ("gold standard")

TRENDS AND FUTURE

complex local transforms

multimodal data, 3D data sets

brute force approaches

CNN

expert systems

Analysis of the Arnolfini Portrait (Jan van Eyck)

From Criminisi et al., Microsoft Research

a

APPLICATIONS DIFFERENT TIMES

Medieval mosaic conservation, Prague

Image warping

Human to animal warping by TPS

Realistic warping

Morphing = warping + blending

Distinctive image features from scale-invariant keypoints. David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Hodně příznaků
- Opakovatelné
- Reprezentativní (orientace, měřítko)
- Rychlý výpočet

- 1. Nalézt extrémy
- 2. Vylepšit počet a polohu
- 3. Odstranit vliv otočení a změny měřítka
- 4. Popsat

1. Nalézt extrémy

Příznaky různé v různých rozlišeních - scale

DoG - difference of Gaussians

$$D(\boldsymbol{\sigma}) \equiv (G(k\boldsymbol{\sigma}) - G(\boldsymbol{\sigma})) * I$$

```
SIFT – v jedné oktávě 3 škály (Lowe)
```


Všechny lokální extrémy na 3x3x3 okolí

Non-maximum suppression

Scale space images

Difference-of-Gaussian images

interpolace

interpolace

Čištění kandidátů - nízký kontrast

 - extrémy co jsou hrany (nízká křivost)

832 -> 729 -> 536

Deskriptory – invariance k affinní, šum, osvětlení

- rychlé, distinktivní

Normalizace škála a rotace

odhad velikosti gradientu a směru -> pro nejvýznamnější peak - histogram gradientů (36 binů) pokud hodne podobne maximu -> další feature

SIFT – scale invariant feature transform

Numeric Example

0.37	0.79	0.97	0.98
0.08	0.45	0.79	0.97
0.04	0.31	0.73	0.91
0.45	0.75	0.90	0.98

by Yao Lu

L(x-1,y-1)	L(x,y-1)	L(x+1,y-1)	0.98	
L(x-1,y)	L(x,y)-	+(x+ 1 , y)- θ(x,y)	-0. 9 7-	
L(x-1,y+1)) L(x,y+1)	L(x+1,y+1) 0.91	
0.45	0.75	0.90	0.98	

magnitude(x,y)=
$$\sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

 $\theta(x,y)=atan(\left(\frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}\right)$

by Yao Lu

Orientations in each of the 16 pixels of the cell

The orientations all ended up in two bins: 11 in one bin, 5 in the other. (rough count)

 $5\ 11\ 0\ 0\ 0\ 0\ 0$

SIFT – scale invariant feature transform

urči orientaci a velikost v nejbližším scale pro max peak

$$\begin{split} m(x, y) &= \sqrt{(L(x+1, y) - L(x-1, y))^2 + (L(x, y+1) - L(x, y-1))^2} \\ \theta(x, y) &= \tan^{-1}((L(x, y+1) - L(x, y-1))/(L(x+1, y) - L(x-1, y))) \end{split}$$

Histogram orientací

16x16 - 4x4 okna, 8 směrů -> 128 vektor příznaků

Image Fusion

Input: Several images of the same scene

Output: One image of higher quality

The definition of "quality" depends on the particular application area

Basic fusion strategy

Acquisition of different images Image-to-image registration

Fusion categories

Multisetting fusion

Multiview fusion

Multitemporal fusion

Multimodal fusion

Fusion for image restoration

Multisetting Fusion

Images taken by the same sensor with different settings

Goal: To combine complementary information by image compositing

Multifocus fusion

Multifocus fusion

The original image can be divided into regions such that every region is in focus in at least one channel

Goal:Image everywhere in focus

Idea: Identify the regions in focus (by maximizing proper focus measure) and combine them together

Artificial example

Images with different areas in focus

Fused image

Multiexposure fusion

high dynamic range images

foreground

background

Courtesy of Image Fusion Systems Research

Fusion categories

Multisetting fusion

Multiview fusion

Multitemporal fusion

Multimodal fusion

Fusion for image restoration

Multiview Fusion

Images of the same modality, taken at the same time but from different places or under different conditions

Goal: to supply complementary information from different views

Multiview fusion - stereo

Courtesy of CMP, CVUT, Prague

Fusion categories

Multisetting fusion

Multiview fusion

Multitemporal fusion

Multimodal fusion

Fusion for image restoration

Multitemporal Fusion

Images of the same scene taken at different times (usually of the same modality)

Goal: Change detection, noise suppression, image synthesis

Methods: Subtraction, false color synthesis, time averaging, image blending

Synthesis of artificial images

Fusion categories

Multisetting fusion

Multiview fusion

Multitemporal fusion

Multimodal fusion

Fusion for image restoration

Multimodal Fusion

Images of different modalities: PET, CT, MRI, visible, infrared, ultraviolet, etc.

Goal: To emphasize band-specific information

Multimodal Fusion

Pixel-wise fusion

Fusion in transform domains

Object-level fusion

Pixel-wise fusion

С

PET

А

В

Transform domain

С

Object-level

С

Multimodal Fusion object level fusion

PET

multimodal fusion for quality enhancement

СТ

Jaszczak SPECT Phantom

MAP restoration

Multimodal Fusion art conservation applications

ultraviolet wide band

visible light

ultraviolet narrow band

Multimodal Fusion art conservation applications

Multimodal Fusion art conservation applications

fusion for change detection

Multimodal fusion of images with different resolution

One image with high spatial resolution, the other one with low spatial but high spectral resolution.

Goal: An image with high spatial and spectral resolution

Multimodal fusion of images with different resolution

Goal: An image with high spatial and spectral resolution

Methods: Replacing intensity in IHS

Replacing intensity in PCA

Replacing high frequencies

Replacing bands in WT

IHS transformation RGB image -> HIS

Hue,Saturation, Intensity

I -> PAN

HIS -> RGB

FUSED PRODUCT

Original HRPI (panchromatic band)

Original LRMIs (RGB) (resampled at 1-m pixel size).

Result of the HPF method

PCA method

Wavelety

Morfologie

- Předzpracování odšumování, skeletonizace, konvexní obal
- Segmentace
- Rozpoznávání plocha, hranice

Morfologie Strukturní element

- adekvátní studovanému objektu

0	0	1	0	0
0	1	1	1	0
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0

Morfologie – dilatace a eroze Fit & Hit & Miss

Morfologie – dilatace a eroze Eroze $f \ominus s$ $g(x, y) = \begin{cases} 1 \text{ jestliže } s \text{ FIT } f \\ 0 \text{ jinak} \end{cases}$

Morfologie – dilatace a eroze Eroze

 $E = \mathbb{Z}^2$ $A \ominus B = \{ z \in E | B_z \subseteq A \}.$ $B_z = \{b + z | b \in B\}.$

Morfologie – dilatace a eroze Dilatace

 $g(x, y) = \begin{cases} 1 \text{ jestliže } s \text{ HIT } f \\ 0 \text{ jinak} \end{cases}$

 Image: Sector of the sector

f⊕s

Morfologie – dilatace a eroze Dilatace

$A \oplus B = \{ z \in E | (B)_z \cap A \neq \emptyset \}.$

Morfologie – dilatace a eroze vlastnosti

$A \oplus B = B \oplus A$

 $(A\oplus B)\oplus C=A\oplus (B\oplus C))$

eroze - neplatí komutativita, asociativita

Eroze – odstranění struktur daného tvaru

Dilatace - zaplnění děr daného tvaru

Morfologie – složené operace

Morfologie – složené operace

-opakování základních operací EROZE a DILATACE, stejný SE

- OTEVŘENÍ = EROZE -> DILATACE

- UZAVŘENÍ = DILATACE -> EROZE

Morfologie – OTEVŘENÍ

 $\boldsymbol{f} \circ \boldsymbol{s} = (\boldsymbol{f} \ominus \boldsymbol{s}) \oplus \boldsymbol{s}$

vyhlazuje hranice, rozděluje tenká spojení, odstraňuje malé objekty, ale zachovává tvar

$A \circ B = \bigcup \{ (B)_z \mid (B)_z \subseteq A \}$

sjednocení všech posunů B, které pasují do A

Morfologie – OTEVŘENÍ

-idempotentní $(A \circ B) \circ B = A \circ B.$

Morfologie – OTEVŘENÍ

Morfologie – UZAVŘENÍ

 $f \cdot s = (f \oplus s) \ominus s$

vyhlazuje hranice, odstraňuje malé díry,

zaplňuje malé předěly, ale zachovává tvar

Doplněk sjednocení všech posunů B, které se nepřekrývají s A

-idempotentní $(A \bullet B) \bullet B = A \bullet B$

Morfologie – UZAVŘENÍ

Morfologie – vlastnosti

Otevření A°B je podmnožina A

jestliže C je podmnožina D, pak C °B je podmnožina D °B

Uzavření A je podmnožina A•B

jestliže C je podmnožina D, pak C •B je podmnožina D •B

Otevření a uzavření jsou duální vzhledem k doplňku a zrcadlení $(A \bullet B)^c = (A^c \circ \hat{B})$

 $A \cdot B = (A \oplus B) \ominus B$

opening of A →removal of small protrusions, thin connections, ...

closing of A → removal of holes

Porovnání operací

Strukturální element – objekt (B1) a pozadí (B2)
Pasuje B1 do objektu a současně B2 nepasuje do objektu, tedy pasuje do pozadí ?

Morfologie – Hit or Miss

A, okno W a pozadí (W-X) doplněk A, eroze A s X eroze doplňku A s (W-X) průnik s pozicí X

$$A \circledast B = (A \ominus X) \cap [A^c \ominus (W - X)]$$

Morfologie – detekce hranice

 $\beta(A) = A - (A \ominus B)$

 $A \ominus B$

 $\beta(A)$

Morfologie – zaplňování mezer

 $X_k = (X_{k-1} \oplus B) \cap A^c \quad k = 1, 2, 3....$

iterativně

 $X_k = (X_{k-1} \oplus B) \cap A^c \quad k = 1, 2, 3....$

Morfologie – vyhlazování

Morfologie – konvexní obal

$X_{k+1}^{i} = (X_{k}^{i} \circledast B^{i}) \cup A \quad i = 1, 2, 3, 4 \text{ and } k = 1, 2, 3, ...$

A je konvexní, jestliže každá přímá spojnice dvou bodů z A je v A.

(a) Structuring elements. (b) Set A. (c)-(f) Results of convergence with the structuring elements shown in (a). (g) Convex hull. $X_0^1 = A$ X_4^1 X_2^2 $C(A) = \bigcup_{i=1}^{4} D^{i}$ X_s^3 X_{2}^{4} C(A)

Morfologie – thinning

 $A \otimes B = A - (A \otimes B)$ $=A \cap (A \otimes B)^c$

FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Set *A*. (c) Result of thinning with the first element. (d)–(i) Results of thinning with the next seven elements (there was no change between the seventh and eighth elements). (j) Result of using the first element again (there were no changes for the next two elements). (k) Result after convergence. (l) Conversion to *m*-connectivity.

Morfologie – dilatace a eroze Šedotónová

DILATACE – v každé poloze se sečtou po prvcích hodnoty strukt. elementu a odpovídající části obrazu a nalezne se MAX

EROZE– v každé poloze se odečtou po prvcích hodnoty strukt. elementu od odpovídající části obrazu a nalezne se MIN

Morfologie – otevření a uzavření Šedotónové

Morfologie – vyhlazování Šedotónové

OTEVŘENÍ pak UZAVŘENÍ

Morfologie – gradient Šedotónové

 $(A\oplus B)-(A\ominus B)$

Erosion IΘB

Morfologie

Dilatation I⊕B

Closing I•B = (I⊕B)ΘB

Opening IoB = (I⊖B)⊕B

Images courtesy of OpenCV tutorial at CVPR-2001