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Martin Mirbauer™, Miroslav Krabec, Jaroslav Kfivanek™, Elena Sikudova

Abstract—Classification of 3D objects — the selection of a category in which each object belongs — is of great interest in the field of
machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and
representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey
of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected
classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected
approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into
formats native to each network, and for training and evaluating different classification approaches on this data. Despite being partially
unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as well as their
performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We
make our code available to simplify running training experiments with multiple neural networks with different prerequisites.

Index Terms—3D shape analysis, classification algorithms, computer graphics, convolutional neural network, deep learning, image
processing, machine learning, multi-layer neural network, neural networks, object recognition.
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1 INTRODUCTION feature extraction — one of the tasks in the broader context
L ) . of machine understanding of shapes and scenes.
Classification and generation of 3D shapes is one of the We define the classification task as follows: we are given
widely researched topics in the field of artificial intelligence. , get of training examples {(z1,¥1), -- -, (Tn,Yn)}, where z;
It is applied in a vast number of fields such as autonomous i 5 3p shape representation and y; is a numerical encoding

driving [1], analysis of medical data [2] as well as various o the corresponding label. Each shape belongs to exactly
fields of computer vision and eravhics [3! 4]. Classification o . T A dmoife g o 411 s L1y




Goals

« Survey
« Overview of approaches
« Taxonomy

 Evaluation
« Replicate
« Framework for running the training experiments
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survey

« Task: shape -> class

« Network structure:
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Fig. 2. Reported accuracies of the surveyed methods over time. Datasets and input representations are denoted by different colors and shapes.




Taxonomy of approaches
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« VoxNet [Maturana and Scherer 2015]

- 3D ShapeNets [Wu et al. 2014]
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Volumetric grid-based approaches
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~Voxception-ResNet” in Generative and discriminative voxel
r(nodeling with convolutional neural networks [Brock et al. 2016]
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Figure 4: Voxception-ResNet 45 Layer Architecture. DS are Voxception-Downsample blocks.
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Volumetric grid-based approaches
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« “ORION" in Orientation-boosted voxel nets for 3D object
recognition [Sedaghat et al. 2016]

3D Convnet

Figure 1: Adding orientation classification as an auxiliary task to a 3D classification network
improves its category-level classification accuracy.
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Volumetric grid-based approaches

Volumetric grid

Basic Architectures
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« LightNet: A lightweight 3D convolutional neural network for
real-time 3D object recognition [Zhi et al. 2017]

« Beam search for learning a deep convolutional neural network

of 3D shapes [Xu and Todorovic 2016]
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Volumetric grid-based approaches
- OctNet [Riegler et al. 2017]

Basic Architectures « O-CNN [Wang et al. 2017] (“octree”)

| ith .
poxe SR - Adaptive O-CNN [Wang et al. 2018]
“octree-adaptive”)
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Auxiliary Task

Network Architecture

— oA
Optimization Network | without voting | with voting %
Octree-represented O-CNN(3) 85.5% 87.1% ;
Voxel Grid O-CNN(4) 38 37 rj
Unsupervised O-CNN(5) 89.6% 90.4% 2
Representation O-CNN(6) 89.9% 90.6%
Learning O-CNN(7) 89.5% 90.1%
Non-convolutional O-CNN(8) 89.6% 90.2%
Approaches Table 1. Object classification results on ModelNet40 dataset. The number
Conversion from shown in the table is the accuracy of object recognition. The second and
a Point Cloud third columns show the results of the network with and without voting.

Numbers in parentheses are the resolutions of voxels. A number in boldface . . .
(a) Layer I: 32° (b) Layer 2: 16 (c) Layer 3: 8”

emphasizes the best result.
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Volumetric grid-based approaches
« VConv-DAE [Sharma et al. 2016]
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Volumetric grid-based approaches
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« FPNN: Field probing neural networks for 3D data [Li et al. 2016]
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Volumetric grid-based approaches
- VoxNet [Maturana and Scherer 2015]

Basic Architectures  PointGrid [Le and Dudan 20]8]
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Volumetric grid-based approaches

3D convolutions
Skip connections, residual blocks
Data augmentation (rotation), architecture optimizations

Low resolution, slow evaluation (except for octree representation)

17



Multi-view iImage-based approaches
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Multi-view iImage-based approaches

+ Learning methods for generic object recognition with invariance
Basic Architectures to pose and lighting [Lecun and Huang 2004 ]

« ,MVCNN" Multi-view convolutional neural networks for 3D shape
recognition [Su et al. 2015]

Multiple Modalities

Axis-aligned Views

Learned View Grouping

H 2 E | bathtubD
Unsupervised : » N bed -
. . . i B - C alr.
Viewpoints Assignment _ S\ 4 B | : |, eskio
Unsupervised N Y e
Representation AR
P : 4 W toilet =
Learning
Using Auxiliary Data 3D shape model
rendered with 2D rendered our multi-view CNN architecture output dass
G t different virtual cameras images predictions
eometr
. | Y Figure 1. Multi-view CNN for 3D shape recognition (illustrated using the 1*' camera setup). At test time a 3D shape is rendered from 12
SpeC|C1| mages different views and are passed thorough CNN; to extract view based features. These are then pooled across views and passed through
PI‘OjeCtionS Panorama CNN to obtain a compact shape descriptor.
Spherical

- A deeper look at 3D shape classifiers [Su et al. 2018] (“mvecnn2”)



Multi-view iImage-based approaches

 Pairwise decomposition of image sequences for active multi-
Basic Architectures view recognition [Johns et al. 2016]

« Deep learning for 3D shape classification based on volumetric
density and surface approximation clues [Minto et al. 2018]
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Multi-view iImage-based approaches

« Deep learning for 3D shape classification from multiple depth

Basic Architectures
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Images
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maps [Zanuttigh and Minto 2017]

 Learning 3D shapes as multi-layered height-majps using 2D
convolutional networks [Sarkar et al. 2018

Fig. 1. (Left) Multi-layered height-map descriptors for a shape with the view along Z.
(Right) Visualization of the corresponding descriptor with & = 3 from 3 different views 21
of X, Y and Z.




Multi-view iImage-based approaches

« GVCNN: Group-view convolutional neural networks for 3D
shape recognition [Feng et al. 2018]
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- SeqViews2SeqgLabels: Learning 3D global features via
aggregating sequential views by RNN with attention [Zhizhong
et al. 2018] (q

seq2seq”)

()
oooooooooooooooo
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Encoder
RNN

e I'he first view ®

— 7
S
e hawm eesssee S ceccene

V sequential views
(a) Sequential view capture (b) SeqViews2SeqLabels
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Multi-view iImage-based approaches

« RotationNet: Joint object categorization and pose estimation

Basic Architectures using multiviews from unsupervised viewpoints [Kanezaki et all.
2018] (“rotnet”)

Multiple Modalities

. . . view 2
Axis-aligned Views w— _ _ == TR
Input: U‘F- o 2 : car —4
- Multi-view images of | | 5 : bed B
Learned View Grouping an unaligned object o . 1 view:

- Category label

I_view i_view car I_view car i_view

Unsupervised | : i 3 i= [
Viewpoints Assignment P M - e : . 2 view 3 ~{ view 3 — view 2
Unsupervised
Representation
Learning

Using Auxiliary Data

Geometry
Special Images
Projections [Panorama

Spherical

23



Multi-view iImage-based approaches
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Multi-view iImage-based approaches
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Multi-view iImage-based approaches

« Using 2D CNNs

« Possible re-use of
« architecture ideas from 2D CNNs (residual blocks)

- pre-trained weights for feature extractors (transfer learning)

- View aggregation: max./avg. pooling, RNN
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Point cloud-based approaches
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Point cloud-based approaches
« PointNet: Deep learning on point sets for 3D

Symmetric Operation on Points
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classification and segmentation [Qi et al. 2017]
(“pointnet”)

input mlp (64,64) e mlp (64,128,1024)

" input points

transform :E—* transform (512,256,k)
m .
<
=

__output scores_

. Deep Sets [Zaheer’et al. 2017]
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Point cloud-based approaches

Symmetric Operation on Points

- PointNet++ [Qi et al. 2017] (“pointnet2”)

Hierarchical Feature Extraction . a0 4 y =

Convolution on Neighborhood Graph

. Classification
o e " e Jn H —_ —_— —_— S v
Defining Grid” Around the Query Point _ _ % 8
. sampling & pointnet sampling & pointnet S B g
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-]

on Points Continuous Convolution N

set abstraction set abstraction

pointnet fully connected layers

Sequential  |Using Attention Mechanism

e oy » Escape from cells: Deep Kd-Networks for the
Processing |Encoding Locality into the Order reCOgnltIOH of 3D Pomt cloud models
of Points |[Klokov and Lempitsky 2017] (“kdnet”)

Unsupervised Learning of Shapes
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Point cloud-based approaches
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Point cloud-based approaches
« Mining point cloud local structures by kernel

Symmaetric Operation on Points correlation and graph pooling [Shen et al. 2018]
« KPConv [Thomas et al. 2019]
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Input
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Point cloud-based approaches
 Multiresolution tree networks for 3D point cloud

Symmetric Operation on Points PrOC@SSing [Gadelhq et al. 20]8]
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Point cloud-based approaches
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Point cloud-based approaches

« Processing points:
« aggregate using a symmetric function
 re-invent convolution and pooling

. group/cluster points — hierarchichy
+ (nearest neighbor graph)

 reorder points and use 1D convolution or attention
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Surface shape-lbased approaches

Surface shape
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Convolution
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Surface shape-lbased approaches

- MeshNet: mesh neural network for 3D shape representation [Feng

Manifold-based
Convolution

Graph-based
Convolution

Native Mesh-
based Approaches

et al. 2019]

« MeshCNN: a network with an edge [Hanocka et al. 2019]

Figure 3: Initial values of each face. There are four types
of initial values, divided into two parts: center, corner and
normal are the face information, and neighbor index 1s the
neighbor information.

Fig. 1. Mesh pooling operates on irregular structures and adapts spatially

to the task. Unlike geometric simplification (removes edges with a minimal

geometric distortion), mesh pooling delegates which edges to collapse to 37

the network. Top row: MeshCNN trained to classify whether a vase has a

handle, bottom row: trained on whether there is a neck (top-piece).



Hybrid approaches

Ensembling

Descriptor
Merging

» FusionNet [Hegde and Zadeh 2016]

« PVNet: A joint convolutional network of point cloud and multi-view for
3D shape recognition [You et al. 2018]

Attention Attention
Fusion Fusion ! . ' Pooling '
Block Block b

(first) (second)

Point Cloud

l Point Cloud

Global Feature

Network

e Feat Embedded 1x 2048
gl Global Feature View Feature
M x 4096
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Survey conclusion

- Different representations, each with many possible approaches

« Taxonomy

* Paper:

Volumetric grid Multi-view (images) Point cloud Surface shape Hybrid

Manifold-based

Network Architecture

Optimization Learned View Grouping | |Defining . “Grid” Around the Query Point
- Convolution
Octree-represented Unsupervised on Points Continuous Convolution
Voxel Grid Viewpoints Assignment
Unsupervised Unsupervised
Representation Representation Sequential Using Attention Mechanism
Learning Learning Point Cloud
Non-convolutional Using Auxiliary Data Processing Enching Locality into the Order
Approaches of Points

Conversion from a Point
Cloud

Geometry
Images

Unsupervised Learning of Shapes

Special
Projections |Panorama

Spherical

Basic Architectures Basic Architectures Symmetric Operation on Points . Ensembling
Convolution
voxel CN.N with Residual Multiple Modalities Hierarchical Feature Extraction Groph—bgsed Descriptor
Connections Convolution Merging
Auxiliary Task Axis-aligned Views Convolution on Neighborhood Graph Native Mesh-based
Approaches

« One paragraph describing the architecture and results for each surveyed approach
- Evaluation of selected approaches
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Fvaluation

- Data conversion: ModelNet/ShapeNet to network-native (voxel grid, multi-view
images, point cloud)

« Runtime: Train and evaluate

« Requirements:
e Xx86_64 CPU, NVIDIA GPU
« Linux + Docker + NVIDIA Container Toolkit

- SW dependencies provided in Docker containers

» Visualization:
« Per-network accuracy and loss on train/test set

« Accuracy compadrison plot
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Results

Volumetric grid
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Fig. 6. The measured accuracies on different datasets. The bars show the test set accuracy at the epoch with the best validation accuracy and
same-colored Y and e mark the highest achieved accuracy on the test and validation subsets on the same dataset, respectively. o marks accuracies
reported on ModelNet40 and T marks the replicated test set accuracy on the point clouds provided by Qi et al. using 1024 points (qi1024).



Results overview

« Best achieved accuracy (overoge over all testsets)
. multi-view images:
« mvecnn2 91.83% = 0.98 pp
- rotnet 91.38% + 0.71 pp (faster, smaller)
2. point cloud:
« pointnet2 89.67% + 0.76 pp
3. voxel grid:
« octree 89.37% = 0.75 pp
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Speed, memory consumption
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Speed, memory consumption
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Conclusions

» Multi-view approaches: best accuracy at the cost of size and speed
« Octree-based volumes: less demanding, good accuracy

« Good price-to-performance ratio:
 Volumetric: O-CNN or Adaptive O-CNN
« Multi-view images: RotationNet
» Point clouds: Kd-network for classifying
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Abstract—Classification of 3D objects ~ the selection of a category in which each object belongs is of great interest in the field of
machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and
representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey
of existing methods and identity common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected
classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected
approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into
formats native to each network, and for training and evaluating different classification approaches on this ata. Despite being partially
unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as wel as their
performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We
make our code available to simplify running training experiments with multple neural networks with different prerequisites.

Index Terms—3D shape analysis, classification algorithms, computer graphics, convolutional neural network, deep learning, image
processing, machine learning, multi-layer neural network, neural networks, object recognition.
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1 INTRODUCTION feature extraction - one of the tasks in the broader context

Webpage of the paper:
Classification and generation of 3D shapes is one of the ”f"xr}:n,‘ “,Y’S:?f;mdi"\i‘r ’ha‘p“’ ”:‘: ;‘“"Q ve are giver . i i i
e E o, odan e chalcatn ksl e e g https://cgg.mff.cuni.cz/publications/survey-

oy (@nyyn) )
'; is appilﬁd ina vast r:umb;r ﬂlf amldﬁmh as laluﬂ‘“"m"“* is a 3D shape representation and y; is a numerical encoding
driving [1], analysis of medical data [2] as well as various  of the corresponding label. Each shape belongs to exactly H
fds ot computer vicon . raphice [31,Clsiication. oo CrsPoning lbe. Exch shape blongs fo cacty and-evaluation-of-neural-3d-shape-
of objects in 2D images has been revolutionized by deep  p(g) » Y, where X is a space of 3D shapes, Y is a space +
convolutional neural networks [5, 6] and has been shown to  of Iabels, and 4 are trainable parameters. With 0 optimized
achieve super-human accuracy [7]. This is not yet the case o, minimize a prediction error metric, P(8) should predict 1 H
for 3D shapes,peshaps becaus ofth ack o  reresen L cornet s abe foraoch 3D shage ot X+ classification-approaches
tion that is both expressive and easy to process by a neural The contributions of this work are: —t
network.

First, we extensively survey deep learning-based 3D

Numerous network architectures working with different  shape classification approaches published before October
3D shape representations have been designed, and new ones 2019 and categorize them based on common approach ideas,
are still being developed. However, their relative perfor-  which provides researchers with an overview of approaches
‘mance needs further evaluation and comparison. suitable for processing 3D shapes.

As the number of published approaches increases, un-  Second, we select several existing techniques of 3D shape
derstanding existing approaches, finding the proper repre-  classification to replicate their reported results, compare and
sentation and approach for a given application, and follow-  evaluate them on publicly available CAD datasets. We pr
ing new ones becomes more difficult. Categorizing them vide a pipeline which simplifies evaluating quality of new
into a taxonomy and comparing the methods which classifiers and methods for converting between different
different representations is essential to simplify orientation ~ shape representations. The code is available on the project’s
in the landscape of approaches. websitd"

In this work, we focus on supervised learning, specifi-
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